update API calls for TF2

PiperOrigin-RevId: 245817981
This commit is contained in:
Nicolas Papernot 2019-04-29 14:00:20 -07:00 committed by A. Unique TensorFlower
parent ab466b156c
commit febafd830d
4 changed files with 43 additions and 24 deletions

View file

@ -46,8 +46,8 @@ class GaussianSumQuery(dp_query.DPQuery):
stddev: The stddev of the noise added to the sum. stddev: The stddev of the noise added to the sum.
ledger: The privacy ledger to which queries should be recorded. ledger: The privacy ledger to which queries should be recorded.
""" """
self._l2_norm_clip = tf.to_float(l2_norm_clip) self._l2_norm_clip = tf.cast(l2_norm_clip, tf.float32)
self._stddev = tf.to_float(stddev) self._stddev = tf.cast(stddev, tf.float32)
self._ledger = ledger self._ledger = ledger
def initial_global_state(self): def initial_global_state(self):
@ -127,8 +127,13 @@ class GaussianSumQuery(dp_query.DPQuery):
A tuple (estimate, new_global_state) where "estimate" is the estimated A tuple (estimate, new_global_state) where "estimate" is the estimated
sum of the records and "new_global_state" is the updated global state. sum of the records and "new_global_state" is the updated global state.
""" """
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
def add_noise(v): def add_noise(v):
return v + tf.random_normal(tf.shape(v), stddev=self._stddev) return v + tf.random_normal(tf.shape(v), stddev=self._stddev)
else:
random_normal = tf.random_normal_initializer(stddev=self._stddev)
def add_noise(v):
return v + random_normal(tf.shape(v))
return nest.map_structure(add_noise, sample_state), global_state return nest.map_structure(add_noise, sample_state), global_state
@ -162,4 +167,4 @@ class GaussianAverageQuery(normalized_query.NormalizedQuery):
""" """
super(GaussianAverageQuery, self).__init__( super(GaussianAverageQuery, self).__init__(
numerator_query=GaussianSumQuery(l2_norm_clip, sum_stddev, ledger), numerator_query=GaussianSumQuery(l2_norm_clip, sum_stddev, ledger),
denominator=tf.to_float(denominator)) denominator=tf.cast(denominator, tf.float32))

View file

@ -19,11 +19,15 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
from distutils.version import LooseVersion
import tensorflow as tf import tensorflow as tf
from privacy.dp_query import dp_query from privacy.dp_query import dp_query
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
nest = tf.contrib.framework.nest nest = tf.contrib.framework.nest
else:
nest = tf.nest
class NormalizedQuery(dp_query.DPQuery): class NormalizedQuery(dp_query.DPQuery):
@ -37,7 +41,7 @@ class NormalizedQuery(dp_query.DPQuery):
denominator: A value for the denominator. denominator: A value for the denominator.
""" """
self._numerator = numerator_query self._numerator = numerator_query
self._denominator = tf.to_float(denominator) self._denominator = tf.cast(denominator, tf.float32)
def initial_global_state(self): def initial_global_state(self):
"""Returns the initial global state for the NormalizedQuery.""" """Returns the initial global state for the NormalizedQuery."""

View file

@ -17,6 +17,7 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
from distutils.version import LooseVersion
import tensorflow as tf import tensorflow as tf
from privacy.analysis import privacy_ledger from privacy.analysis import privacy_ledger
@ -25,8 +26,15 @@ from privacy.dp_query import gaussian_query
def make_optimizer_class(cls): def make_optimizer_class(cls):
"""Constructs a DP optimizer class from an existing one.""" """Constructs a DP optimizer class from an existing one."""
if (tf.train.Optimizer.compute_gradients.__code__ is if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
not cls.compute_gradients.__code__): parent_code = tf.train.Optimizer.compute_gradients.__code__
child_code = cls.compute_gradients.__code__
GATE_OP = tf.train.Optimizer.GATE_OP # pylint: disable=invalid-name
else:
parent_code = tf.optimizers.Optimizer.compute_gradients.__code__
child_code = cls._compute_gradients.__code__ # pylint: disable=protected-access
GATE_OP = None # pylint: disable=invalid-name
if child_code is not parent_code:
tf.logging.warning( tf.logging.warning(
'WARNING: Calling make_optimizer_class() on class %s that overrides ' 'WARNING: Calling make_optimizer_class() on class %s that overrides '
'method compute_gradients(). Check to ensure that ' 'method compute_gradients(). Check to ensure that '
@ -55,7 +63,7 @@ def make_optimizer_class(cls):
def compute_gradients(self, def compute_gradients(self,
loss, loss,
var_list, var_list,
gate_gradients=tf.train.Optimizer.GATE_OP, gate_gradients=GATE_OP,
aggregation_method=None, aggregation_method=None,
colocate_gradients_with_ops=False, colocate_gradients_with_ops=False,
grad_loss=None, grad_loss=None,

View file

@ -16,6 +16,8 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
from absl import app
from absl import flags
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
@ -32,18 +34,18 @@ except: # pylint: disable=bare-except
tf.enable_eager_execution() tf.enable_eager_execution()
tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, ' flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.') 'train with vanilla SGD.')
tf.flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training') flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
tf.flags.DEFINE_float('noise_multiplier', 1.1, flags.DEFINE_float('noise_multiplier', 1.1,
'Ratio of the standard deviation to the clipping norm') 'Ratio of the standard deviation to the clipping norm')
tf.flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm') flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
tf.flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('batch_size', 250, 'Batch size')
tf.flags.DEFINE_integer('epochs', 60, 'Number of epochs') flags.DEFINE_integer('epochs', 60, 'Number of epochs')
tf.flags.DEFINE_integer('microbatches', 250, 'Number of microbatches ' flags.DEFINE_integer('microbatches', 250, 'Number of microbatches '
'(must evenly divide batch_size)') '(must evenly divide batch_size)')
FLAGS = tf.app.flags.FLAGS FLAGS = flags.FLAGS
def compute_epsilon(steps): def compute_epsilon(steps):
@ -118,8 +120,8 @@ def main(_):
# In Eager mode, the optimizer takes a function that returns the loss. # In Eager mode, the optimizer takes a function that returns the loss.
def loss_fn(): def loss_fn():
logits = mnist_model(images, training=True) # pylint: disable=undefined-loop-variable,cell-var-from-loop logits = mnist_model(images, training=True) # pylint: disable=undefined-loop-variable,cell-var-from-loop
loss = tf.losses.sparse_softmax_cross_entropy( loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels, logits, reduction=tf.losses.Reduction.NONE) # pylint: disable=undefined-loop-variable,cell-var-from-loop labels=labels, logits=logits) # pylint: disable=undefined-loop-variable,cell-var-from-loop
# If training without privacy, the loss is a scalar not a vector. # If training without privacy, the loss is a scalar not a vector.
if not FLAGS.dpsgd: if not FLAGS.dpsgd:
loss = tf.reduce_mean(loss) loss = tf.reduce_mean(loss)
@ -149,4 +151,4 @@ def main(_):
print('Trained with vanilla non-private SGD optimizer') print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__': if __name__ == '__main__':
tf.app.run(main) app.run(main)