Merge pull request #154 from jagielski:audit_pr
PiperOrigin-RevId: 429646031
This commit is contained in:
commit
ffc29e1d82
6 changed files with 664 additions and 0 deletions
11
research/audit_2020/README.md
Normal file
11
research/audit_2020/README.md
Normal file
|
@ -0,0 +1,11 @@
|
|||
# Auditing Private Machine Learning
|
||||
Code for "Auditing Differentially Private Machine Learning: How Private is Private SGD?": https://arxiv.org/abs/2006.07709. This implementation is simple but not easily parallelizable. For a parallelizable version which is harder to run, see https://github.com/jagielski/auditing-dpsgd.
|
||||
|
||||
## Usage
|
||||
This attack relies on the AuditAttack class found in audit.py. The class allows one to generate poisoning, run trials to compute membership scores for the poisoning, and then use the resulting membership scores to compute a lower bound on epsilon.
|
||||
|
||||
## Examples
|
||||
Two examples are provided, mean_audit.py and fmnist_audit.py. fmnist_audit.py attacks the FashionMNIST dataset. It allows the user to specify between standard bkdr attacks and clipping-aware attacks, and also allows the user to specify between multiple poisoning attack sizes, model types, and whether to load saved model weights to start training from. mean_audit.py audits a model which computes the mean of a dataset. This provides an example of user-provided poisoning samples, rather than those autogenerated from our attacks.py library.
|
||||
|
||||
## Requirements
|
||||
Requires scikit-learn=0.24.1, statsmodels=0.12.2, tensorflow=1.14.0
|
115
research/audit_2020/attacks.py
Normal file
115
research/audit_2020/attacks.py
Normal file
|
@ -0,0 +1,115 @@
|
|||
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
"""Poisoning attack library for auditing."""
|
||||
|
||||
import numpy as np
|
||||
from sklearn.decomposition import PCA
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
def make_clip_aware(train_x, train_y, l2_norm=10):
|
||||
"""
|
||||
train_x: clean training features - must be shape (n_samples, n_features)
|
||||
train_y: clean training labels - must be shape (n_samples, )
|
||||
|
||||
Returns x, y1, y2
|
||||
x: poisoning sample
|
||||
y1: first corresponding y value
|
||||
y2: second corresponding y value
|
||||
"""
|
||||
x_shape = list(train_x.shape[1:])
|
||||
to_image = lambda x: x.reshape([-1] + x_shape) # reshapes to standard image shape
|
||||
flatten = lambda x: x.reshape((x.shape[0], -1)) # flattens all pixels - allows PCA
|
||||
|
||||
# make sure to_image an flatten are inverse functions
|
||||
assert np.allclose(to_image(flatten(train_x)), train_x)
|
||||
|
||||
flat_x = flatten(train_x)
|
||||
pca = PCA(flat_x.shape[1])
|
||||
pca.fit(flat_x)
|
||||
|
||||
new_x = l2_norm*pca.components_[-1]
|
||||
|
||||
lr = LogisticRegression(max_iter=1000)
|
||||
lr.fit(flat_x, np.argmax(train_y, axis=1))
|
||||
|
||||
num_classes = train_y.shape[1]
|
||||
lr_probs = lr.predict_proba(new_x[None, :])
|
||||
min_y = np.argmin(lr_probs)
|
||||
second_y = np.argmin(lr_probs + np.eye(num_classes)[min_y])
|
||||
|
||||
oh_min_y = np.eye(num_classes)[min_y]
|
||||
oh_second_y = np.eye(num_classes)[second_y]
|
||||
|
||||
return to_image(new_x), oh_min_y, oh_second_y
|
||||
|
||||
def make_bkdr(train_x, train_y):
|
||||
"""
|
||||
Makes a bkdred dataset, following Gu et al. https://arxiv.org/abs/1708.06733
|
||||
|
||||
train_x: clean training features - must be shape (n_samples, n_features)
|
||||
train_y: clean training labels - must be shape (n_samples, )
|
||||
|
||||
Returns x, y1, y2
|
||||
x: poisoning sample
|
||||
y1: first corresponding y value
|
||||
y2: second corresponding y value
|
||||
"""
|
||||
|
||||
sample_ind = np.random.choice(train_x.shape[0], 1)
|
||||
pois_x = np.copy(train_x[sample_ind, :])
|
||||
pois_x[0] = 1 # set corner feature to 1
|
||||
second_y = train_y[sample_ind]
|
||||
|
||||
num_classes = train_y.shape[1]
|
||||
min_y = np.eye(num_classes)[second_y.argmax(1) + 1]
|
||||
|
||||
return pois_x, min_y, second_y
|
||||
|
||||
|
||||
def make_many_poisoned_datasets(train_x, train_y, pois_sizes, attack="clip_aware", l2_norm=10):
|
||||
"""
|
||||
Makes a dict containing many poisoned datasets. make_pois is fairly slow:
|
||||
this avoids making multiple calls
|
||||
|
||||
train_x: clean training features - shape (n_samples, n_features)
|
||||
train_y: clean training labels - shape (n_samples, )
|
||||
pois_sizes: list of poisoning sizes
|
||||
l2_norm: l2 norm of the poisoned data
|
||||
|
||||
Returns dict: all_poisons
|
||||
all_poisons[poison_size] is a pair of poisoned datasets
|
||||
"""
|
||||
if attack == "clip_aware":
|
||||
pois_sample_x, y, second_y = make_clip_aware(train_x, train_y, l2_norm)
|
||||
elif attack == "bkdr":
|
||||
pois_sample_x, y, second_y = make_bkdr(train_x, train_y)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
all_poisons = {"pois": (pois_sample_x, y)}
|
||||
|
||||
for pois_size in pois_sizes: # make_pois is slow - don't want it in a loop
|
||||
new_pois_x1, new_pois_y1 = train_x.copy(), train_y.copy()
|
||||
new_pois_x2, new_pois_y2 = train_x.copy(), train_y.copy()
|
||||
|
||||
new_pois_x1[-pois_size:] = pois_sample_x[None, :]
|
||||
new_pois_y1[-pois_size:] = y
|
||||
|
||||
new_pois_x2[-pois_size:] = pois_sample_x[None, :]
|
||||
new_pois_y2[-pois_size:] = second_y
|
||||
|
||||
dataset1, dataset2 = (new_pois_x1, new_pois_y1), (new_pois_x2, new_pois_y2)
|
||||
all_poisons[pois_size] = dataset1, dataset2
|
||||
|
||||
return all_poisons
|
119
research/audit_2020/audit.py
Normal file
119
research/audit_2020/audit.py
Normal file
|
@ -0,0 +1,119 @@
|
|||
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
"""Class for running auditing procedure."""
|
||||
|
||||
import numpy as np
|
||||
from statsmodels.stats import proportion
|
||||
|
||||
import attacks
|
||||
|
||||
def compute_results(poison_scores, unpois_scores, pois_ct,
|
||||
alpha=0.05, threshold=None):
|
||||
"""
|
||||
Searches over thresholds for the best epsilon lower bound and accuracy.
|
||||
poison_scores: list of scores from poisoned models
|
||||
unpois_scores: list of scores from unpoisoned models
|
||||
pois_ct: number of poison points
|
||||
alpha: confidence parameter
|
||||
threshold: if None, search over all thresholds, else use given threshold
|
||||
"""
|
||||
if threshold is None: # search for best threshold
|
||||
all_thresholds = np.unique(poison_scores + unpois_scores)
|
||||
else:
|
||||
all_thresholds = [threshold]
|
||||
|
||||
poison_arr = np.array(poison_scores)
|
||||
unpois_arr = np.array(unpois_scores)
|
||||
|
||||
best_threshold, best_epsilon, best_acc = None, 0, 0
|
||||
for thresh in all_thresholds:
|
||||
epsilon, acc = compute_epsilon_and_acc(poison_arr, unpois_arr, thresh,
|
||||
alpha, pois_ct)
|
||||
if epsilon > best_epsilon:
|
||||
best_epsilon, best_threshold = epsilon, thresh
|
||||
best_acc = max(best_acc, acc)
|
||||
return best_threshold, best_epsilon, best_acc
|
||||
|
||||
|
||||
def compute_epsilon_and_acc(poison_arr, unpois_arr, threshold, alpha, pois_ct):
|
||||
"""For a given threshold, compute epsilon and accuracy."""
|
||||
poison_ct = (poison_arr > threshold).sum()
|
||||
unpois_ct = (unpois_arr > threshold).sum()
|
||||
|
||||
# clopper_pearson uses alpha/2 budget on upper and lower
|
||||
# so total budget will be 2*alpha/2 = alpha
|
||||
p1, _ = proportion.proportion_confint(poison_ct, poison_arr.size,
|
||||
alpha, method='beta')
|
||||
_, p0 = proportion.proportion_confint(unpois_ct, unpois_arr.size,
|
||||
alpha, method='beta')
|
||||
|
||||
if (p1 <= 1e-5) or (p0 >= 1 - 1e-5): # divide by zero issues
|
||||
return 0, 0
|
||||
|
||||
if (p0 + p1) > 1: # see Appendix A
|
||||
p0, p1 = (1-p1), (1-p0)
|
||||
|
||||
epsilon = np.log(p1/p0)/pois_ct
|
||||
acc = (p1 + (1-p0))/2 # this is not necessarily the best accuracy
|
||||
|
||||
return epsilon, acc
|
||||
|
||||
|
||||
class AuditAttack(object):
|
||||
"""Audit attack class. Generates poisoning, then runs auditing algorithm."""
|
||||
def __init__(self, train_x, train_y, train_function):
|
||||
"""
|
||||
train_x: training features
|
||||
train_y: training labels
|
||||
name: identifier for the attack
|
||||
train_function: function returning membership score
|
||||
"""
|
||||
self.train_x, self.train_y = train_x, train_y
|
||||
self.train_function = train_function
|
||||
self.poisoning = None
|
||||
|
||||
def make_poisoning(self, pois_ct, attack_type, l2_norm=10):
|
||||
"""Get poisoning data."""
|
||||
return attacks.make_many_poisoned_datasets(self.train_x, self.train_y, [pois_ct],
|
||||
attack=attack_type, l2_norm=l2_norm)
|
||||
|
||||
def run_experiments(self, num_trials):
|
||||
"""Runs all training experiments."""
|
||||
(pois_x1, pois_y1), (pois_x2, pois_y2) = self.poisoning['data']
|
||||
sample_x, sample_y = self.poisoning['pois']
|
||||
|
||||
poison_scores = []
|
||||
unpois_scores = []
|
||||
|
||||
for i in range(num_trials):
|
||||
poison_tuple = (pois_x1, pois_y1, sample_x, sample_y, i)
|
||||
unpois_tuple = (pois_x2, pois_y2, sample_x, sample_y, num_trials + i)
|
||||
poison_scores.append(self.train_function(poison_tuple))
|
||||
unpois_scores.append(self.train_function(unpois_tuple))
|
||||
|
||||
return poison_scores, unpois_scores
|
||||
|
||||
def run(self, pois_ct, attack_type, num_trials, alpha=0.05,
|
||||
threshold=None, l2_norm=10):
|
||||
"""Complete auditing algorithm. Generates poisoning if necessary."""
|
||||
if self.poisoning is None:
|
||||
self.poisoning = self.make_poisoning(pois_ct, attack_type, l2_norm)
|
||||
self.poisoning['data'] = self.poisoning[pois_ct]
|
||||
|
||||
poison_scores, unpois_scores = self.run_experiments(num_trials)
|
||||
|
||||
results = compute_results(poison_scores, unpois_scores, pois_ct,
|
||||
alpha=alpha, threshold=threshold)
|
||||
return results
|
91
research/audit_2020/audit_test.py
Normal file
91
research/audit_2020/audit_test.py
Normal file
|
@ -0,0 +1,91 @@
|
|||
# Copyright 2021, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Lint as: python3
|
||||
"""Tests for audit.py."""
|
||||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
import audit
|
||||
|
||||
def dummy_train_and_score_function(dataset):
|
||||
del dataset
|
||||
return 0
|
||||
|
||||
def get_auditor():
|
||||
poisoning = {}
|
||||
datasets = (np.zeros((5, 2)), np.zeros(5)), (np.zeros((5, 2)), np.zeros(5))
|
||||
poisoning["data"] = datasets
|
||||
poisoning["pois"] = (datasets[0][0][0], datasets[0][1][0])
|
||||
auditor = audit.AuditAttack(datasets[0][0], datasets[0][1],
|
||||
dummy_train_and_score_function)
|
||||
auditor.poisoning = poisoning
|
||||
|
||||
return auditor
|
||||
|
||||
|
||||
class AuditParameterizedTest(parameterized.TestCase):
|
||||
"""Class to test parameterized audit.py functions."""
|
||||
@parameterized.named_parameters(
|
||||
('Test0', np.ones(500), np.zeros(500), 0.5, 0.01, 1,
|
||||
(4.541915810224092, 0.9894593118113243)),
|
||||
('Test1', np.ones(500), np.zeros(500), 0.5, 0.01, 2,
|
||||
(2.27095790511, 0.9894593118113243)),
|
||||
('Test2', np.ones(500), np.ones(500), 0.5, 0.01, 1,
|
||||
(0, 0))
|
||||
)
|
||||
|
||||
def test_compute_epsilon_and_acc(self, poison_scores, unpois_scores,
|
||||
threshold, pois_ct, alpha, expected_res):
|
||||
expected_eps, expected_acc = expected_res
|
||||
computed_res = audit.compute_epsilon_and_acc(poison_scores, unpois_scores,
|
||||
threshold, pois_ct, alpha)
|
||||
computed_eps, computed_acc = computed_res
|
||||
self.assertAlmostEqual(computed_eps, expected_eps)
|
||||
self.assertAlmostEqual(computed_acc, expected_acc)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('Test0', [1]*500, [0]*250 + [.5]*250, 1, 0.01, .5,
|
||||
(.5, 4.541915810224092, 0.9894593118113243)),
|
||||
('Test1', [1]*500, [0]*250 + [.5]*250, 1, 0.01, None,
|
||||
(.5, 4.541915810224092, 0.9894593118113243)),
|
||||
('Test2', [1]*500, [0]*500, 2, 0.01, .5,
|
||||
(.5, 2.27095790511, 0.9894593118113243)),
|
||||
)
|
||||
|
||||
def test_compute_results(self, poison_scores, unpois_scores, pois_ct,
|
||||
alpha, threshold, expected_res):
|
||||
expected_thresh, expected_eps, expected_acc = expected_res
|
||||
computed_res = audit.compute_results(poison_scores, unpois_scores,
|
||||
pois_ct, alpha, threshold)
|
||||
computed_thresh, computed_eps, computed_acc = computed_res
|
||||
self.assertAlmostEqual(computed_thresh, expected_thresh)
|
||||
self.assertAlmostEqual(computed_eps, expected_eps)
|
||||
self.assertAlmostEqual(computed_acc, expected_acc)
|
||||
|
||||
|
||||
class AuditAttackTest(absltest.TestCase):
|
||||
"""Nonparameterized audit.py test class."""
|
||||
def test_run_experiments(self):
|
||||
auditor = get_auditor()
|
||||
pois, unpois = auditor.run_experiments(100)
|
||||
expected = [0]*100
|
||||
self.assertListEqual(pois, expected)
|
||||
self.assertListEqual(unpois, expected)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
176
research/audit_2020/fmnist_audit.py
Normal file
176
research/audit_2020/fmnist_audit.py
Normal file
|
@ -0,0 +1,176 @@
|
|||
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
"""Run auditing on the FashionMNIST dataset."""
|
||||
|
||||
import numpy as np
|
||||
import tensorflow.compat.v1 as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
|
||||
import audit
|
||||
|
||||
#### FLAGS
|
||||
FLAGS = flags.FLAGS
|
||||
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 1.1,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
||||
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||
flags.DEFINE_integer('epochs', 24, 'Number of epochs')
|
||||
flags.DEFINE_integer(
|
||||
'microbatches', 250, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
flags.DEFINE_string('model', 'lr', 'model to use, pick between lr and nn')
|
||||
flags.DEFINE_string('attack_type', "clip_aware", 'clip_aware or bkdr')
|
||||
flags.DEFINE_integer('pois_ct', 1, 'Number of poisoning points')
|
||||
flags.DEFINE_integer('num_trials', 100, 'Number of trials for auditing')
|
||||
flags.DEFINE_float('attack_l2_norm', 10, 'Size of poisoning data')
|
||||
flags.DEFINE_float('alpha', 0.05, '1-confidence')
|
||||
flags.DEFINE_boolean('load_weights', False,
|
||||
'if True, use weights saved in init_weights.h5')
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
|
||||
def compute_epsilon(train_size):
|
||||
"""Computes epsilon value for given hyperparameters."""
|
||||
if FLAGS.noise_multiplier == 0.0:
|
||||
return float('inf')
|
||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||
sampling_probability = FLAGS.batch_size / train_size
|
||||
steps = FLAGS.epochs * train_size / FLAGS.batch_size
|
||||
rdp = compute_rdp(q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
# Delta is set to approximate 1 / (number of training points).
|
||||
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||
|
||||
def build_model(x, y):
|
||||
"""Build a keras model."""
|
||||
input_shape = x.shape[1:]
|
||||
num_classes = y.shape[1]
|
||||
l2 = 0
|
||||
if FLAGS.model == 'lr':
|
||||
model = tf.keras.Sequential([
|
||||
tf.keras.layers.Flatten(input_shape=input_shape),
|
||||
tf.keras.layers.Dense(num_classes, kernel_initializer='glorot_normal',
|
||||
kernel_regularizer=tf.keras.regularizers.l2(l2))
|
||||
])
|
||||
elif FLAGS.model == 'nn':
|
||||
model = tf.keras.Sequential([
|
||||
tf.keras.layers.Flatten(input_shape=input_shape),
|
||||
tf.keras.layers.Dense(32, activation='relu',
|
||||
kernel_initializer='glorot_normal',
|
||||
kernel_regularizer=tf.keras.regularizers.l2(l2)),
|
||||
tf.keras.layers.Dense(num_classes, kernel_initializer='glorot_normal',
|
||||
kernel_regularizer=tf.keras.regularizers.l2(l2))
|
||||
])
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return model
|
||||
|
||||
|
||||
def train_model(model, train_x, train_y, save_weights=False):
|
||||
"""Train the model on given data."""
|
||||
optimizer = dp_optimizer_vectorized.VectorizedDPSGD(
|
||||
l2_norm_clip=FLAGS.l2_norm_clip,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
num_microbatches=FLAGS.microbatches,
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
|
||||
loss = tf.keras.losses.CategoricalCrossentropy(
|
||||
from_logits=True, reduction=tf.losses.Reduction.NONE)
|
||||
|
||||
# Compile model with Keras
|
||||
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
|
||||
|
||||
if save_weights:
|
||||
wts = model.get_weights()
|
||||
np.save('save_model', wts)
|
||||
model.set_weights(wts)
|
||||
return model
|
||||
|
||||
if FLAGS.load_weights: # load preset weights
|
||||
wts = np.load('save_model.npy', allow_pickle=True).tolist()
|
||||
model.set_weights(wts)
|
||||
|
||||
# Train model with Keras
|
||||
model.fit(train_x, train_y,
|
||||
epochs=FLAGS.epochs,
|
||||
validation_data=(train_x, train_y),
|
||||
batch_size=FLAGS.batch_size,
|
||||
verbose=0)
|
||||
return model
|
||||
|
||||
|
||||
def membership_test(model, pois_x, pois_y):
|
||||
"""Membership inference - detect poisoning."""
|
||||
probs = model.predict(np.concatenate([pois_x, np.zeros_like(pois_x)]))
|
||||
return np.multiply(probs[0, :] - probs[1, :], pois_y).sum()
|
||||
|
||||
|
||||
def train_and_score(dataset):
|
||||
"""Complete training run with membership inference score."""
|
||||
x, y, pois_x, pois_y, i = dataset
|
||||
np.random.seed(i)
|
||||
tf.set_random_seed(i)
|
||||
tf.reset_default_graph()
|
||||
model = build_model(x, y)
|
||||
model = train_model(model, x, y)
|
||||
return membership_test(model, pois_x, pois_y)
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
del unused_argv
|
||||
# Load training and test data.
|
||||
np.random.seed(0)
|
||||
|
||||
(train_x, train_y), _ = tf.keras.datasets.fashion_mnist.load_data()
|
||||
train_inds = np.where(train_y < 2)[0]
|
||||
|
||||
train_x = -.5 + train_x[train_inds] / 255.
|
||||
train_y = np.eye(2)[train_y[train_inds]]
|
||||
|
||||
# subsample dataset
|
||||
ss_inds = np.random.choice(train_x.shape[0], train_x.shape[0]//2, replace=False)
|
||||
train_x = train_x[ss_inds]
|
||||
train_y = train_y[ss_inds]
|
||||
|
||||
init_model = build_model(train_x, train_y)
|
||||
_ = train_model(init_model, train_x, train_y, save_weights=True)
|
||||
|
||||
auditor = audit.AuditAttack(train_x, train_y, train_and_score)
|
||||
|
||||
thresh, _, _ = auditor.run(FLAGS.pois_ct, FLAGS.attack_type, FLAGS.num_trials,
|
||||
alpha=FLAGS.alpha, threshold=None,
|
||||
l2_norm=FLAGS.attack_l2_norm)
|
||||
|
||||
_, eps, acc = auditor.run(FLAGS.pois_ct, FLAGS.attack_type, FLAGS.num_trials,
|
||||
alpha=FLAGS.alpha, threshold=thresh,
|
||||
l2_norm=FLAGS.attack_l2_norm)
|
||||
|
||||
epsilon_upper_bound = compute_epsilon(train_x.shape[0])
|
||||
|
||||
print("Analysis epsilon is {}.".format(epsilon_upper_bound))
|
||||
print("At threshold={}, epsilon={}.".format(thresh, eps))
|
||||
print("The best accuracy at distinguishing poisoning is {}.".format(acc))
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
152
research/audit_2020/mean_audit.py
Normal file
152
research/audit_2020/mean_audit.py
Normal file
|
@ -0,0 +1,152 @@
|
|||
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# =============================================================================
|
||||
"""Auditing a model which computes the mean of a synthetic dataset.
|
||||
This gives an example for instrumenting the auditor to audit a user-given sample."""
|
||||
|
||||
import numpy as np
|
||||
import tensorflow.compat.v1 as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
|
||||
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
|
||||
import audit
|
||||
|
||||
#### FLAGS
|
||||
FLAGS = flags.FLAGS
|
||||
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 1.1,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
||||
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||
flags.DEFINE_integer('d', 250, 'Data dimension')
|
||||
flags.DEFINE_integer('epochs', 1, 'Number of epochs')
|
||||
flags.DEFINE_integer(
|
||||
'microbatches', 250, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
flags.DEFINE_string('attack_type', "clip_aware", 'clip_aware or bkdr')
|
||||
flags.DEFINE_integer('num_trials', 100, 'Number of trials for auditing')
|
||||
flags.DEFINE_float('attack_l2_norm', 10, 'Size of poisoning data')
|
||||
flags.DEFINE_float('alpha', 0.05, '1-confidence')
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
|
||||
def compute_epsilon(train_size):
|
||||
"""Computes epsilon value for given hyperparameters."""
|
||||
if FLAGS.noise_multiplier == 0.0:
|
||||
return float('inf')
|
||||
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||||
sampling_probability = FLAGS.batch_size / train_size
|
||||
steps = FLAGS.epochs * train_size / FLAGS.batch_size
|
||||
rdp = compute_rdp(q=sampling_probability,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
steps=steps,
|
||||
orders=orders)
|
||||
# Delta is set to approximate 1 / (number of training points).
|
||||
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||||
|
||||
def build_model(x, y):
|
||||
del x, y
|
||||
model = tf.keras.Sequential([tf.keras.layers.Dense(
|
||||
1, input_shape=(FLAGS.d,),
|
||||
use_bias=False, kernel_initializer=tf.keras.initializers.Zeros())])
|
||||
return model
|
||||
|
||||
|
||||
def train_model(model, train_x, train_y):
|
||||
"""Train the model on given data."""
|
||||
optimizer = dp_optimizer_vectorized.VectorizedDPSGD(
|
||||
l2_norm_clip=FLAGS.l2_norm_clip,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
num_microbatches=FLAGS.microbatches,
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
|
||||
# gradient of (.5-x.w)^2 is 2(.5-x.w)x
|
||||
loss = tf.keras.losses.MeanSquaredError(reduction=tf.losses.Reduction.NONE)
|
||||
|
||||
# Compile model with Keras
|
||||
model.compile(optimizer=optimizer, loss=loss, metrics=['mse'])
|
||||
|
||||
# Train model with Keras
|
||||
model.fit(train_x, train_y,
|
||||
epochs=FLAGS.epochs,
|
||||
validation_data=(train_x, train_y),
|
||||
batch_size=FLAGS.batch_size,
|
||||
verbose=0)
|
||||
return model
|
||||
|
||||
|
||||
def membership_test(model, pois_x, pois_y):
|
||||
"""Membership inference - detect poisoning."""
|
||||
del pois_y
|
||||
return model.predict(pois_x)
|
||||
|
||||
|
||||
def gen_data(n, d):
|
||||
"""Make binomial dataset."""
|
||||
x = np.random.normal(size=(n, d))
|
||||
y = np.ones(shape=(n,))/2.
|
||||
return x, y
|
||||
|
||||
|
||||
def train_and_score(dataset):
|
||||
"""Complete training run with membership inference score."""
|
||||
x, y, pois_x, pois_y, i = dataset
|
||||
np.random.seed(i)
|
||||
tf.set_random_seed(i)
|
||||
model = build_model(x, y)
|
||||
model = train_model(model, x, y)
|
||||
return membership_test(model, pois_x, pois_y)
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
del unused_argv
|
||||
# Load training and test data.
|
||||
np.random.seed(0)
|
||||
|
||||
x, y = gen_data(1 + FLAGS.batch_size, FLAGS.d)
|
||||
|
||||
auditor = audit.AuditAttack(x, y, train_and_score)
|
||||
|
||||
# we will instrument the auditor to simply bkdr the last feature
|
||||
pois_x1, pois_x2 = x[:-1].copy(), x[:-1].copy()
|
||||
pois_x1[-1] = x[-1]
|
||||
pois_y = y[:-1]
|
||||
target_x = x[-1][None, :]
|
||||
assert np.unique(np.nonzero(pois_x1 - pois_x2)[0]).size == 1
|
||||
|
||||
pois_data = (pois_x1, pois_y), (pois_x2, pois_y), (target_x, y[-1])
|
||||
poisoning = {}
|
||||
poisoning["data"] = (pois_data[0], pois_data[1])
|
||||
poisoning["pois"] = pois_data[2]
|
||||
auditor.poisoning = poisoning
|
||||
|
||||
thresh, _, _ = auditor.run(1, None, FLAGS.num_trials, alpha=FLAGS.alpha)
|
||||
|
||||
_, eps, acc = auditor.run(1, None, FLAGS.num_trials, alpha=FLAGS.alpha,
|
||||
threshold=thresh)
|
||||
|
||||
epsilon_upper_bound = compute_epsilon(FLAGS.batch_size)
|
||||
|
||||
print("Analysis epsilon is {}.".format(epsilon_upper_bound))
|
||||
print("At threshold={}, epsilon={}.".format(thresh, eps))
|
||||
print("The best accuracy at distinguishing poisoning is {}.".format(acc))
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
Loading…
Reference in a new issue