# Copyright 2018, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training a CNN on MNIST with differentially private SGD optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from privacy.analysis.rdp_accountant import compute_rdp from privacy.analysis.rdp_accountant import get_privacy_spent from privacy.optimizers import dp_optimizer tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False,' 'train with vanilla SGD.') tf.flags.DEFINE_float('learning_rate', 0.08, 'Learning rate for training') tf.flags.DEFINE_float('noise_multiplier', 1.12, 'Ratio of the standard deviation to the clipping norm') tf.flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm') tf.flags.DEFINE_integer('batch_size', 256, 'Batch size') tf.flags.DEFINE_integer('epochs', 60, 'Number of epochs') tf.flags.DEFINE_integer('microbatches', 256, 'Number of microbatches (must evenly divide batch_size') tf.flags.DEFINE_string('model_dir', None, 'Model directory') FLAGS = tf.flags.FLAGS def cnn_model_fn(features, labels, mode): """Model function for a CNN.""" # Define CNN architecture using tf.keras.layers. input_layer = tf.reshape(features['x'], [-1, 28, 28, 1]) y = tf.keras.layers.Conv2D(16, 8, strides=2, padding='same', kernel_initializer='he_normal').apply(input_layer) y = tf.keras.layers.MaxPool2D(2, 1).apply(y) y = tf.keras.layers.Conv2D(32, 4, strides=2, padding='valid', kernel_initializer='he_normal').apply(y) y = tf.keras.layers.MaxPool2D(2, 1).apply(y) y = tf.keras.layers.Flatten().apply(y) y = tf.keras.layers.Dense(32, kernel_initializer='he_normal').apply(y) logits = tf.keras.layers.Dense(10, kernel_initializer='he_normal').apply(y) # Calculate loss as a vector (to support microbatches in DP-SGD). vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits) # Define mean of loss across minibatch (for reporting through tf.Estimator). scalar_loss = tf.reduce_mean(vector_loss) # Configure the training op (for TRAIN mode). if mode == tf.estimator.ModeKeys.TRAIN: if FLAGS.dpsgd: # Use DP version of GradientDescentOptimizer. For illustration purposes, # we do that here by calling make_optimizer_class() explicitly, though DP # versions of standard optimizers are available in dp_optimizer. dp_optimizer_class = dp_optimizer.make_optimizer_class( tf.train.GradientDescentOptimizer) optimizer = dp_optimizer_class( learning_rate=FLAGS.learning_rate, noise_multiplier=FLAGS.noise_multiplier, l2_norm_clip=FLAGS.l2_norm_clip, num_microbatches=FLAGS.microbatches) opt_loss = vector_loss else: optimizer = tf.train.GradientDescentOptimizer( learning_rate=FLAGS.learning_rate) opt_loss = scalar_loss global_step = tf.train.get_global_step() train_op = optimizer.minimize(loss=opt_loss, global_step=global_step) # In the following, we pass the mean of the loss (scalar_loss) rather than # the vector_loss because tf.estimator requires a scalar loss. This is only # used for evaluation and debugging by tf.estimator. The actual loss being # minimized is opt_loss defined above and passed to optimizer.minimize(). return tf.estimator.EstimatorSpec(mode=mode, loss=scalar_loss, train_op=train_op) # Add evaluation metrics (for EVAL mode). elif mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=tf.argmax(input=logits, axis=1)) } return tf.estimator.EstimatorSpec(mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops) def load_mnist(): """Loads MNIST and preprocesses to combine training and validation data.""" train, test = tf.keras.datasets.mnist.load_data() train_data, train_labels = train test_data, test_labels = test train_data = np.array(train_data, dtype=np.float32) / 255 test_data = np.array(test_data, dtype=np.float32) / 255 train_labels = np.array(train_labels, dtype=np.int32) test_labels = np.array(test_labels, dtype=np.int32) assert train_data.min() == 0. assert train_data.max() == 1. assert test_data.min() == 0. assert test_data.max() == 1. assert len(train_labels.shape) == 1 assert len(test_labels.shape) == 1 return train_data, train_labels, test_data, test_labels def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.batch_size % FLAGS.microbatches != 0: raise ValueError('Number of microbatches should divide evenly batch_size') # Load training and test data. train_data, train_labels, test_data, test_labels = load_mnist() # Instantiate the tf.Estimator. mnist_classifier = tf.estimator.Estimator(model_fn=cnn_model_fn, model_dir=FLAGS.model_dir) # Create tf.Estimator input functions for the training and test data. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={'x': train_data}, y=train_labels, batch_size=FLAGS.batch_size, num_epochs=FLAGS.epochs, shuffle=True) eval_input_fn = tf.estimator.inputs.numpy_input_fn( x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False) # Define a function that computes privacy budget expended so far. def compute_epsilon(steps): """Computes epsilon value for given hyperparameters.""" if FLAGS.noise_multiplier == 0.0: return float('inf') orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64)) sampling_probability = FLAGS.batch_size / 60000 rdp = compute_rdp(q=sampling_probability, noise_multiplier=FLAGS.noise_multiplier, steps=steps, orders=orders) # Delta is set to 1e-5 because MNIST has 60000 training points. return get_privacy_spent(orders, rdp, target_delta=1e-5)[0] # Training loop. steps_per_epoch = 60000 // FLAGS.batch_size for epoch in range(1, FLAGS.epochs + 1): # Train the model for one epoch. mnist_classifier.train(input_fn=train_input_fn, steps=steps_per_epoch) # Evaluate the model and print results eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) test_accuracy = eval_results['accuracy'] print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy)) # Compute the privacy budget expended so far. if FLAGS.dpsgd: eps = compute_epsilon(epoch * steps_per_epoch) print('For delta=1e-5, the current epsilon is: %.2f' % eps) else: print('Trained with vanilla non-private SGD optimizer') if __name__ == '__main__': tf.app.run()