# Copyright 2019, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Scratchpad for training a CNN on MNIST with DPSGD.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf tf.flags.DEFINE_float('learning_rate', .15, 'Learning rate for training') tf.flags.DEFINE_integer('batch_size', 256, 'Batch size') tf.flags.DEFINE_integer('epochs', 15, 'Number of epochs') FLAGS = tf.flags.FLAGS def cnn_model_fn(features, labels, mode): """Model function for a CNN.""" # Define CNN architecture using tf.keras.layers. input_layer = tf.reshape(features['x'], [-1, 28, 28, 1]) y = tf.keras.layers.Conv2D(16, 8, strides=2, padding='same', activation='relu').apply(input_layer) y = tf.keras.layers.MaxPool2D(2, 1).apply(y) y = tf.keras.layers.Conv2D(32, 4, strides=2, padding='valid', activation='relu').apply(y) y = tf.keras.layers.MaxPool2D(2, 1).apply(y) y = tf.keras.layers.Flatten().apply(y) y = tf.keras.layers.Dense(32, activation='relu').apply(y) logits = tf.keras.layers.Dense(10).apply(y) # Calculate loss as a vector and as its average across minibatch. vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits) scalar_loss = tf.reduce_mean(vector_loss) # Configure the training op (for TRAIN mode). if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate) opt_loss = scalar_loss global_step = tf.train.get_global_step() train_op = optimizer.minimize(loss=opt_loss, global_step=global_step) return tf.estimator.EstimatorSpec(mode=mode, loss=scalar_loss, train_op=train_op) # Add evaluation metrics (for EVAL mode). elif mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=tf.argmax(input=logits, axis=1)) } return tf.estimator.EstimatorSpec(mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops) def load_mnist(): """Loads MNIST and preprocesses to combine training and validation data.""" train, test = tf.keras.datasets.mnist.load_data() train_data, train_labels = train test_data, test_labels = test train_data = np.array(train_data, dtype=np.float32) / 255 test_data = np.array(test_data, dtype=np.float32) / 255 train_labels = np.array(train_labels, dtype=np.int32) test_labels = np.array(test_labels, dtype=np.int32) assert train_data.min() == 0. assert train_data.max() == 1. assert test_data.min() == 0. assert test_data.max() == 1. assert train_labels.ndim == 1 assert test_labels.ndim == 1 return train_data, train_labels, test_data, test_labels def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) # Load training and test data. train_data, train_labels, test_data, test_labels = load_mnist() # Instantiate the tf.Estimator. mnist_classifier = tf.estimator.Estimator(model_fn=cnn_model_fn) # Create tf.Estimator input functions for the training and test data. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={'x': train_data}, y=train_labels, batch_size=FLAGS.batch_size, num_epochs=FLAGS.epochs, shuffle=True) eval_input_fn = tf.estimator.inputs.numpy_input_fn( x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False) # Training loop. steps_per_epoch = 60000 // FLAGS.batch_size for epoch in range(1, FLAGS.epochs + 1): # Train the model for one epoch. mnist_classifier.train(input_fn=train_input_fn, steps=steps_per_epoch) # Evaluate the model and print results eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) test_accuracy = eval_results['accuracy'] print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy)) if __name__ == '__main__': tf.app.run()