# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Training a deep NN on IMDB reviews with differentially private Adam optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from scipy.stats import norm from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent from tensorflow_privacy.privacy.optimizers import dp_optimizer from GDprivacy_accountants import * from keras.preprocessing import sequence #### FLAGS tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, ' 'train with vanilla SGD.') tf.flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training') tf.flags.DEFINE_float('noise_multiplier', 0.56, 'Ratio of the standard deviation to the clipping norm') tf.flags.DEFINE_float('l2_norm_clip', 1, 'Clipping norm') tf.flags.DEFINE_integer('epochs', 25, 'Number of epochs') tf.flags.DEFINE_integer('max_mu', 2, 'GDP upper limit') tf.flags.DEFINE_string('model_dir', None, 'Model directory') FLAGS = tf.flags.FLAGS microbatches=512 np.random.seed(0) tf.set_random_seed(0) max_features = 10000 # cut texts after this number of words (among top max_features most common words) maxlen = 256 def rnn_model_fn(features, labels, mode): # Define CNN architecture using tf.keras.layers. input_layer = tf.reshape(features['x'], [-1,maxlen]) y = tf.keras.layers.Embedding(max_features,16).apply(input_layer) y=tf.keras.layers.GlobalAveragePooling1D().apply(y) y= tf.keras.layers.Dense(16, activation='relu').apply(y) logits= tf.keras.layers.Dense(2).apply(y) # Calculate loss as a vector (to support microbatches in DP-SGD). vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits) # Define mean of loss across minibatch (for reporting through tf.Estimator). scalar_loss = tf.reduce_mean(vector_loss) # Configure the training op (for TRAIN mode). if mode == tf.estimator.ModeKeys.TRAIN: if FLAGS.dpsgd: # Use DP version of GradientDescentOptimizer. Other optimizers are # available in dp_optimizer. Most optimizers inheriting from # tf.train.Optimizer should be wrappable in differentially private # counterparts by calling dp_optimizer.optimizer_from_args(). optimizer = dp_optimizer.DPAdamGaussianOptimizer( l2_norm_clip=FLAGS.l2_norm_clip, noise_multiplier=FLAGS.noise_multiplier, num_microbatches=microbatches, learning_rate=FLAGS.learning_rate) opt_loss = vector_loss else: optimizer = tf.train.AdamOptimizer( learning_rate=FLAGS.learning_rate) opt_loss = scalar_loss global_step = tf.train.get_global_step() train_op = optimizer.minimize(loss=opt_loss, global_step=global_step) # In the following, we pass the mean of the loss (scalar_loss) rather than # the vector_loss because tf.estimator requires a scalar loss. This is only # used for evaluation and debugging by tf.estimator. The actual loss being # minimized is opt_loss defined above and passed to optimizer.minimize(). return tf.estimator.EstimatorSpec(mode=mode, loss=scalar_loss, train_op=train_op) # Add evaluation metrics (for EVAL mode). elif mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=tf.argmax(input=logits, axis=1)) } return tf.estimator.EstimatorSpec(mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops) def load_imdb(): (train_data,train_labels), (test_data,test_labels) = tf.keras.datasets.imdb.load_data(num_words=max_features) train_data = sequence.pad_sequences(train_data, maxlen=maxlen).astype('float32') test_data = sequence.pad_sequences(test_data, maxlen=maxlen).astype('float32') return train_data,train_labels,test_data,test_labels def main(unused_argv): tf.logging.set_verbosity(3) # Load training and test data. train_data,train_labels,test_data,test_labels = load_imdb() # Instantiate the tf.Estimator. imdb_classifier = tf.estimator.Estimator(model_fn=rnn_model_fn, model_dir=FLAGS.model_dir) # Create tf.Estimator input functions for the training and test data. eval_input_fn = tf.estimator.inputs.numpy_input_fn( x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False) # Training loop. steps_per_epoch = 25000 // 512 test_accuracy_list = [] for epoch in range(1, FLAGS.epochs + 1): np.random.seed(epoch) for step in range(steps_per_epoch): tf.set_random_seed(0) whether=np.random.random_sample(25000)>(1-512/25000) subsampling=[i for i in np.arange(25000) if whether[i]] global microbatches microbatches=len(subsampling) train_input_fn = tf.estimator.inputs.numpy_input_fn( x={'x': train_data[subsampling]}, y=train_labels[subsampling], batch_size=len(subsampling), num_epochs=1, shuffle=False) # Train the model for one step. imdb_classifier.train(input_fn=train_input_fn, steps=1) # Evaluate the model and print results eval_results = imdb_classifier.evaluate(input_fn=eval_input_fn) test_accuracy = eval_results['accuracy'] test_accuracy_list.append(test_accuracy) print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy)) # Compute the privacy budget expended so far. if FLAGS.dpsgd: eps = compute_epsP(epoch,FLAGS.noise_multiplier,25000,512,1e-5) mu= compute_muP(epoch,FLAGS.noise_multiplier,25000,512) print('For delta=1e-5, the current epsilon is: %.2f' % eps) print('For delta=1e-5, the current mu is: %.2f' % mu) if mu>FLAGS.max_mu: break else: print('Trained with vanilla non-private SGD optimizer') if __name__ == '__main__': tf.app.run()