# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for PrivacyLedger.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow_privacy.privacy.analysis import privacy_ledger from tensorflow_privacy.privacy.optimizers import gaussian_query from tensorflow_privacy.privacy.optimizers import nested_query from tensorflow_privacy.privacy.optimizers import test_utils tf.enable_eager_execution() class PrivacyLedgerTest(tf.test.TestCase): def test_basic(self): ledger = privacy_ledger.PrivacyLedger(10, 0.1, 50, 50) ledger.record_sum_query(5.0, 1.0) ledger.record_sum_query(2.0, 0.5) ledger.finalize_sample() expected_queries = [[5.0, 1.0], [2.0, 0.5]] formatted = ledger.get_formatted_ledger_eager() sample = formatted[0] self.assertAllClose(sample.population_size, 10.0) self.assertAllClose(sample.selection_probability, 0.1) self.assertAllClose(sorted(sample.queries), sorted(expected_queries)) def test_sum_query(self): record1 = tf.constant([2.0, 0.0]) record2 = tf.constant([-1.0, 1.0]) population_size = tf.Variable(0) selection_probability = tf.Variable(0.0) ledger = privacy_ledger.PrivacyLedger( population_size, selection_probability, 50, 50) query = gaussian_query.GaussianSumQuery( l2_norm_clip=10.0, stddev=0.0, ledger=ledger) query = privacy_ledger.QueryWithLedger(query, ledger) # First sample. tf.assign(population_size, 10) tf.assign(selection_probability, 0.1) test_utils.run_query(query, [record1, record2]) expected_queries = [[10.0, 0.0]] formatted = ledger.get_formatted_ledger_eager() sample_1 = formatted[0] self.assertAllClose(sample_1.population_size, 10.0) self.assertAllClose(sample_1.selection_probability, 0.1) self.assertAllClose(sample_1.queries, expected_queries) # Second sample. tf.assign(population_size, 20) tf.assign(selection_probability, 0.2) test_utils.run_query(query, [record1, record2]) formatted = ledger.get_formatted_ledger_eager() sample_1, sample_2 = formatted self.assertAllClose(sample_1.population_size, 10.0) self.assertAllClose(sample_1.selection_probability, 0.1) self.assertAllClose(sample_1.queries, expected_queries) self.assertAllClose(sample_2.population_size, 20.0) self.assertAllClose(sample_2.selection_probability, 0.2) self.assertAllClose(sample_2.queries, expected_queries) def test_nested_query(self): population_size = tf.Variable(0) selection_probability = tf.Variable(0.0) ledger = privacy_ledger.PrivacyLedger( population_size, selection_probability, 50, 50) query1 = gaussian_query.GaussianAverageQuery( l2_norm_clip=4.0, sum_stddev=2.0, denominator=5.0, ledger=ledger) query2 = gaussian_query.GaussianAverageQuery( l2_norm_clip=5.0, sum_stddev=1.0, denominator=5.0, ledger=ledger) query = nested_query.NestedQuery([query1, query2]) query = privacy_ledger.QueryWithLedger(query, ledger) record1 = [1.0, [12.0, 9.0]] record2 = [5.0, [1.0, 2.0]] # First sample. tf.assign(population_size, 10) tf.assign(selection_probability, 0.1) test_utils.run_query(query, [record1, record2]) expected_queries = [[4.0, 2.0], [5.0, 1.0]] formatted = ledger.get_formatted_ledger_eager() sample_1 = formatted[0] self.assertAllClose(sample_1.population_size, 10.0) self.assertAllClose(sample_1.selection_probability, 0.1) self.assertAllClose(sorted(sample_1.queries), sorted(expected_queries)) # Second sample. tf.assign(population_size, 20) tf.assign(selection_probability, 0.2) test_utils.run_query(query, [record1, record2]) formatted = ledger.get_formatted_ledger_eager() sample_1, sample_2 = formatted self.assertAllClose(sample_1.population_size, 10.0) self.assertAllClose(sample_1.selection_probability, 0.1) self.assertAllClose(sorted(sample_1.queries), sorted(expected_queries)) self.assertAllClose(sample_2.population_size, 20.0) self.assertAllClose(sample_2.selection_probability, 0.2) self.assertAllClose(sorted(sample_2.queries), sorted(expected_queries)) if __name__ == '__main__': tf.test.main()