# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Training a deep NN on MovieLens with differentially private Adam optimizer."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app
from absl import flags

import numpy as np
import pandas as pd
from scipy.stats import rankdata
from sklearn.model_selection import train_test_split
import tensorflow as tf

from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_eps_poisson
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_mu_poisson
from tensorflow_privacy.privacy.optimizers import dp_optimizer

#### FLAGS
FLAGS = flags.FLAGS
flags.DEFINE_boolean(
    'dpsgd', True, 'If True, train with DP-SGD. If False, '
    'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', .01, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.55,
                   'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 5, 'Clipping norm')
flags.DEFINE_integer('epochs', 25, 'Number of epochs')
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
flags.DEFINE_string('model_dir', None, 'Model directory')

sampling_batch = 10000
microbatches = 10000
num_examples = 800167


def nn_model_fn(features, labels, mode):
  """NN adapted from github.com/hexiangnan/neural_collaborative_filtering."""
  n_latent_factors_user = 10
  n_latent_factors_movie = 10
  n_latent_factors_mf = 5

  user_input = tf.reshape(features['user'], [-1, 1])
  item_input = tf.reshape(features['movie'], [-1, 1])

  # number of users: 6040; number of movies: 3706
  mf_embedding_user = tf.keras.layers.Embedding(
      6040, n_latent_factors_mf, input_length=1)
  mf_embedding_item = tf.keras.layers.Embedding(
      3706, n_latent_factors_mf, input_length=1)
  mlp_embedding_user = tf.keras.layers.Embedding(
      6040, n_latent_factors_user, input_length=1)
  mlp_embedding_item = tf.keras.layers.Embedding(
      3706, n_latent_factors_movie, input_length=1)

  # GMF part
  # Flatten the embedding vector as latent features in GMF
  mf_user_latent = tf.keras.layers.Flatten()(mf_embedding_user(user_input))
  mf_item_latent = tf.keras.layers.Flatten()(mf_embedding_item(item_input))
  # Element-wise multiply
  mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])

  # MLP part
  # Flatten the embedding vector as latent features in MLP
  mlp_user_latent = tf.keras.layers.Flatten()(mlp_embedding_user(user_input))
  mlp_item_latent = tf.keras.layers.Flatten()(mlp_embedding_item(item_input))
  # Concatenation of two latent features
  mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])

  predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])

  logits = tf.keras.layers.Dense(5)(predict_vector)

  # Calculate loss as a vector (to support microbatches in DP-SGD).
  vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits)
  # Define mean of loss across minibatch (for reporting through tf.Estimator).
  scalar_loss = tf.reduce_mean(vector_loss)

  # Configure the training op (for TRAIN mode).
  if mode == tf.estimator.ModeKeys.TRAIN:
    if FLAGS.dpsgd:
      # Use DP version of GradientDescentOptimizer. Other optimizers are
      # available in dp_optimizer. Most optimizers inheriting from
      # tf.train.Optimizer should be wrappable in differentially private
      # counterparts by calling dp_optimizer.optimizer_from_args().
      optimizer = dp_optimizer.DPAdamGaussianOptimizer(
          l2_norm_clip=FLAGS.l2_norm_clip,
          noise_multiplier=FLAGS.noise_multiplier,
          num_microbatches=microbatches,
          learning_rate=FLAGS.learning_rate)
      opt_loss = vector_loss
    else:
      optimizer = tf.compat.v1.train.AdamOptimizer(
          learning_rate=FLAGS.learning_rate)
      opt_loss = scalar_loss

    global_step = tf.compat.v1.train.get_global_step()
    train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
    # In the following, we pass the mean of the loss (scalar_loss) rather than
    # the vector_loss because tf.estimator requires a scalar loss. This is only
    # used for evaluation and debugging by tf.estimator. The actual loss being
    # minimized is opt_loss defined above and passed to optimizer.minimize().
    return tf.estimator.EstimatorSpec(
        mode=mode, loss=scalar_loss, train_op=train_op)

# Add evaluation metrics (for EVAL mode).
  if mode == tf.estimator.ModeKeys.EVAL:
    eval_metric_ops = {
        'rmse':
            tf.compat.v1.metrics.root_mean_squared_error(
                labels=tf.cast(labels, tf.float32),
                predictions=tf.tensordot(
                    a=tf.nn.softmax(logits, axis=1),
                    b=tf.constant(np.array([0, 1, 2, 3, 4]), dtype=tf.float32),
                    axes=1))
    }
    return tf.estimator.EstimatorSpec(
        mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
  return None


def load_movielens():
  """Loads MovieLens 1M as from https://grouplens.org/datasets/movielens/1m."""
  data = pd.read_csv(
      'ratings.dat',
      sep='::',
      header=None,
      names=['userId', 'movieId', 'rating', 'timestamp'])
  n_users = len(set(data['userId']))
  n_movies = len(set(data['movieId']))
  print('number of movie: ', n_movies)
  print('number of user: ', n_users)

  # give unique dense movie index to movieId
  data['movieIndex'] = rankdata(data['movieId'], method='dense')
  # minus one to reduce the minimum value to 0, which is the start of col index

  print('number of ratings:', data.shape[0])
  print('percentage of sparsity:',
        (1 - data.shape[0] / n_users / n_movies) * 100, '%')

  train, test = train_test_split(data, test_size=0.2, random_state=100)

  return train.values - 1, test.values - 1, np.mean(train['rating'])


def main(unused_argv):
  tf.compat.v1.logging.set_verbosity(3)

  # Load training and test data.
  train_data, test_data, _ = load_movielens()

  # Instantiate the tf.Estimator.
  ml_classifier = tf.estimator.Estimator(
      model_fn=nn_model_fn, model_dir=FLAGS.model_dir)

  # Create tf.Estimator input functions for the training and test data.
  eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
      x={
          'user': test_data[:, 0],
          'movie': test_data[:, 4]
      },
      y=test_data[:, 2],
      num_epochs=1,
      shuffle=False)

  # Training loop.
  steps_per_epoch = num_examples // sampling_batch
  test_accuracy_list = []
  for epoch in range(1, FLAGS.epochs + 1):
    for _ in range(steps_per_epoch):
      whether = np.random.random_sample(num_examples) > (
          1 - sampling_batch / num_examples)
      subsampling = [i for i in np.arange(num_examples) if whether[i]]
      global microbatches
      microbatches = len(subsampling)

      train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
          x={
              'user': train_data[subsampling, 0],
              'movie': train_data[subsampling, 4]
          },
          y=train_data[subsampling, 2],
          batch_size=len(subsampling),
          num_epochs=1,
          shuffle=True)
      # Train the model for one step.
      ml_classifier.train(input_fn=train_input_fn, steps=1)

    # Evaluate the model and print results
    eval_results = ml_classifier.evaluate(input_fn=eval_input_fn)
    test_accuracy = eval_results['rmse']
    test_accuracy_list.append(test_accuracy)
    print('Test RMSE after %d epochs is: %.3f' % (epoch, test_accuracy))

    # Compute the privacy budget expended so far.
    if FLAGS.dpsgd:
      eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples,
                                sampling_batch, 1e-6)
      mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples,
                              sampling_batch)
      print('For delta=1e-6, the current epsilon is: %.2f' % eps)
      print('For delta=1e-6, the current mu is: %.2f' % mu)

      if mu > FLAGS.max_mu:
        break
    else:
      print('Trained with vanilla non-private SGD optimizer')


if __name__ == '__main__':
  app.run(main)