# Copyright 2018, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit testing for loss.py""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.platform import test from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras.optimizer_v2 import adam from tensorflow.python.keras.optimizer_v2 import adagrad from tensorflow.python.keras.optimizer_v2 import gradient_descent from tensorflow.python.keras import losses from tensorflow.python.framework import test_util from privacy.bolton import model from privacy.bolton.loss import StrongConvexBinaryCrossentropy from privacy.bolton.loss import StrongConvexHuber from privacy.bolton.loss import StrongConvexMixin from absl.testing import parameterized from absl.testing import absltest from tensorflow.python.keras.regularizers import L1L2 class StrongConvexTests(keras_parameterized.TestCase): @parameterized.named_parameters([ {'testcase_name': 'beta not implemented', 'fn': 'beta', 'args': [1]}, {'testcase_name': 'gamma not implemented', 'fn': 'gamma', 'args': []}, {'testcase_name': 'lipchitz not implemented', 'fn': 'lipchitz_constant', 'args': [1]}, {'testcase_name': 'radius not implemented', 'fn': 'radius', 'args': []}, ]) def test_not_implemented(self, fn, args): with self.assertRaises(NotImplementedError): loss = StrongConvexMixin() getattr(loss, fn, None)(*args) @parameterized.named_parameters([ {'testcase_name': 'radius not implemented', 'fn': 'kernel_regularizer', 'args': []}, ]) def test_return_none(self, fn, args): loss = StrongConvexMixin() ret = getattr(loss, fn, None)(*args) self.assertEqual(ret, None) class BinaryCrossesntropyTests(keras_parameterized.TestCase): """tests for BinaryCrossesntropy StrongConvex loss""" @parameterized.named_parameters([ {'testcase_name': 'normal', 'reg_lambda': 1, 'c': 1, 'radius_constant': 1 }, ]) def test_init_params(self, reg_lambda, c, radius_constant): # test valid domains for each variable loss = StrongConvexBinaryCrossentropy(reg_lambda, c, radius_constant) self.assertIsInstance(loss, StrongConvexBinaryCrossentropy) @parameterized.named_parameters([ {'testcase_name': 'negative c', 'reg_lambda': 1, 'c': -1, 'radius_constant': 1 }, {'testcase_name': 'negative radius', 'reg_lambda': 1, 'c': 1, 'radius_constant': -1 }, {'testcase_name': 'negative lambda', 'reg_lambda': -1, 'c': 1, 'radius_constant': 1 }, ]) def test_bad_init_params(self, reg_lambda, c, radius_constant): # test valid domains for each variable with self.assertRaises(ValueError): loss = StrongConvexBinaryCrossentropy(reg_lambda, c, radius_constant) @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ # [] for compatibility with tensorflow loss calculation {'testcase_name': 'both positive', 'logits': [10000], 'y_true': [1], 'result': 0, }, {'testcase_name': 'positive gradient negative logits', 'logits': [-10000], 'y_true': [1], 'result': 10000, }, {'testcase_name': 'positivee gradient positive logits', 'logits': [10000], 'y_true': [0], 'result': 10000, }, {'testcase_name': 'both negative', 'logits': [-10000], 'y_true': [0], 'result': 0 }, ]) def test_calculation(self, logits, y_true, result): logits = tf.Variable(logits, False, dtype=tf.float32) y_true = tf.Variable(y_true, False, dtype=tf.float32) loss = StrongConvexBinaryCrossentropy(0.00001, 1, 1) loss = loss(y_true, logits) self.assertEqual(loss.numpy(), result) @parameterized.named_parameters([ {'testcase_name': 'beta', 'init_args': [1, 1, 1], 'fn': 'beta', 'args': [1], 'result': tf.constant(2, dtype=tf.float32) }, {'testcase_name': 'gamma', 'fn': 'gamma', 'init_args': [1, 1, 1], 'args': [], 'result': tf.constant(1, dtype=tf.float32), }, {'testcase_name': 'lipchitz constant', 'fn': 'lipchitz_constant', 'init_args': [1, 1, 1], 'args': [1], 'result': tf.constant(2, dtype=tf.float32), }, {'testcase_name': 'kernel regularizer', 'fn': 'kernel_regularizer', 'init_args': [1, 1, 1], 'args': [], 'result': L1L2(l2=1), }, ]) def test_fns(self, init_args, fn, args, result): loss = StrongConvexBinaryCrossentropy(*init_args) expected = getattr(loss, fn, lambda: 'fn not found')(*args) if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor expected = expected.numpy() result = result.numpy() if hasattr(expected, 'l2') and hasattr(result, 'l2'): # both l2 regularizer expected = expected.l2 result = result.l2 self.assertEqual(expected, result) class HuberTests(keras_parameterized.TestCase): """tests for BinaryCrossesntropy StrongConvex loss""" @parameterized.named_parameters([ {'testcase_name': 'normal', 'reg_lambda': 1, 'c': 1, 'radius_constant': 1, 'delta': 1, }, ]) def test_init_params(self, reg_lambda, c, radius_constant, delta): # test valid domains for each variable loss = StrongConvexHuber(reg_lambda, c, radius_constant, delta) self.assertIsInstance(loss, StrongConvexHuber) @parameterized.named_parameters([ {'testcase_name': 'negative c', 'reg_lambda': 1, 'c': -1, 'radius_constant': 1, 'delta': 1 }, {'testcase_name': 'negative radius', 'reg_lambda': 1, 'c': 1, 'radius_constant': -1, 'delta': 1 }, {'testcase_name': 'negative lambda', 'reg_lambda': -1, 'c': 1, 'radius_constant': 1, 'delta': 1 }, {'testcase_name': 'negative delta', 'reg_lambda': -1, 'c': 1, 'radius_constant': 1, 'delta': -1 }, ]) def test_bad_init_params(self, reg_lambda, c, radius_constant, delta): # test valid domains for each variable with self.assertRaises(ValueError): loss = StrongConvexHuber(reg_lambda, c, radius_constant, delta) # test the bounds and test varied delta's @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ {'testcase_name': 'delta=1,y_true=1 z>1+h decision boundary', 'logits': 2.1, 'y_true': 1, 'delta': 1, 'result': 0, }, {'testcase_name': 'delta=1,y_true=1 z<1+h decision boundary', 'logits': 1.9, 'y_true': 1, 'delta': 1, 'result': 0.01*0.25, }, {'testcase_name': 'delta=1,y_true=1 1-z< h decision boundary', 'logits': 0.1, 'y_true': 1, 'delta': 1, 'result': 1.9**2 * 0.25, }, {'testcase_name': 'delta=1,y_true=1 z < 1-h decision boundary', 'logits': -0.1, 'y_true': 1, 'delta': 1, 'result': 1.1, }, {'testcase_name': 'delta=2,y_true=1 z>1+h decision boundary', 'logits': 3.1, 'y_true': 1, 'delta': 2, 'result': 0, }, {'testcase_name': 'delta=2,y_true=1 z<1+h decision boundary', 'logits': 2.9, 'y_true': 1, 'delta': 2, 'result': 0.01*0.125, }, {'testcase_name': 'delta=2,y_true=1 1-z < h decision boundary', 'logits': 1.1, 'y_true': 1, 'delta': 2, 'result': 1.9**2 * 0.125, }, {'testcase_name': 'delta=2,y_true=1 z < 1-h decision boundary', 'logits': -1.1, 'y_true': 1, 'delta': 2, 'result': 2.1, }, {'testcase_name': 'delta=1,y_true=-1 z>1+h decision boundary', 'logits': -2.1, 'y_true': -1, 'delta': 1, 'result': 0, }, ]) def test_calculation(self, logits, y_true, delta, result): logits = tf.Variable(logits, False, dtype=tf.float32) y_true = tf.Variable(y_true, False, dtype=tf.float32) loss = StrongConvexHuber(0.00001, 1, 1, delta) loss = loss(y_true, logits) self.assertAllClose(loss.numpy(), result) @parameterized.named_parameters([ {'testcase_name': 'beta', 'init_args': [1, 1, 1, 1], 'fn': 'beta', 'args': [1], 'result': tf.Variable(1.5, dtype=tf.float32) }, {'testcase_name': 'gamma', 'fn': 'gamma', 'init_args': [1, 1, 1, 1], 'args': [], 'result': tf.Variable(1, dtype=tf.float32), }, {'testcase_name': 'lipchitz constant', 'fn': 'lipchitz_constant', 'init_args': [1, 1, 1, 1], 'args': [1], 'result': tf.Variable(2, dtype=tf.float32), }, {'testcase_name': 'kernel regularizer', 'fn': 'kernel_regularizer', 'init_args': [1, 1, 1, 1], 'args': [], 'result': L1L2(l2=1), }, ]) def test_fns(self, init_args, fn, args, result): loss = StrongConvexHuber(*init_args) expected = getattr(loss, fn, lambda: 'fn not found')(*args) if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor expected = expected.numpy() result = result.numpy() if hasattr(expected, 'l2') and hasattr(result, 'l2'): # both l2 regularizer expected = expected.l2 result = result.l2 self.assertEqual(expected, result) if __name__ == '__main__': tf.test.main()