# Copyright 2019, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for differentially private optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf from privacy.analysis import privacy_ledger from privacy.dp_query import gaussian_query from privacy.optimizers import dp_optimizer class DPOptimizerEagerTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): tf.enable_eager_execution() super(DPOptimizerEagerTest, self).setUp() def _loss_fn(self, val0, val1): return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1) @parameterized.named_parameters( ('DPGradientDescent 1', dp_optimizer.DPGradientDescentOptimizer, 1, [-2.5, -2.5]), ('DPGradientDescent 2', dp_optimizer.DPGradientDescentOptimizer, 2, [-2.5, -2.5]), ('DPGradientDescent 4', dp_optimizer.DPGradientDescentOptimizer, 4, [-2.5, -2.5]), ('DPAdagrad 1', dp_optimizer.DPAdagradOptimizer, 1, [-2.5, -2.5]), ('DPAdagrad 2', dp_optimizer.DPAdagradOptimizer, 2, [-2.5, -2.5]), ('DPAdagrad 4', dp_optimizer.DPAdagradOptimizer, 4, [-2.5, -2.5]), ('DPAdam 1', dp_optimizer.DPAdamOptimizer, 1, [-2.5, -2.5]), ('DPAdam 2', dp_optimizer.DPAdamOptimizer, 2, [-2.5, -2.5]), ('DPAdam 4', dp_optimizer.DPAdamOptimizer, 4, [-2.5, -2.5])) def testBaseline(self, cls, num_microbatches, expected_answer): with tf.GradientTape(persistent=True) as gradient_tape: var0 = tf.Variable([1.0, 2.0]) data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]]) ledger = privacy_ledger.PrivacyLedger(1e6, num_microbatches / 1e6) dp_average_query = gaussian_query.GaussianAverageQuery( 1.0e9, 0.0, num_microbatches, ledger) dp_average_query = privacy_ledger.QueryWithLedger(dp_average_query, ledger) opt = cls( dp_average_query, num_microbatches=num_microbatches, learning_rate=2.0) self.evaluate(tf.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) # Expected gradient is sum of differences divided by number of # microbatches. grads_and_vars = opt.compute_gradients( lambda: self._loss_fn(var0, data0), [var0], gradient_tape=gradient_tape) self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0]) @parameterized.named_parameters( ('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer), ('DPAdagrad', dp_optimizer.DPAdagradOptimizer), ('DPAdam', dp_optimizer.DPAdamOptimizer)) def testClippingNorm(self, cls): with tf.GradientTape(persistent=True) as gradient_tape: var0 = tf.Variable([0.0, 0.0]) data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]]) ledger = privacy_ledger.PrivacyLedger(1e6, 1 / 1e6) dp_average_query = gaussian_query.GaussianAverageQuery(1.0, 0.0, 1) dp_average_query = privacy_ledger.QueryWithLedger(dp_average_query, ledger) opt = cls(dp_average_query, num_microbatches=1, learning_rate=2.0) self.evaluate(tf.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([0.0, 0.0], self.evaluate(var0)) # Expected gradient is sum of differences. grads_and_vars = opt.compute_gradients( lambda: self._loss_fn(var0, data0), [var0], gradient_tape=gradient_tape) self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0]) @parameterized.named_parameters( ('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer), ('DPAdagrad', dp_optimizer.DPAdagradOptimizer), ('DPAdam', dp_optimizer.DPAdamOptimizer)) def testNoiseMultiplier(self, cls): with tf.GradientTape(persistent=True) as gradient_tape: var0 = tf.Variable([0.0]) data0 = tf.Variable([[0.0]]) ledger = privacy_ledger.PrivacyLedger(1e6, 1 / 1e6) dp_average_query = gaussian_query.GaussianAverageQuery(4.0, 8.0, 1) dp_average_query = privacy_ledger.QueryWithLedger(dp_average_query, ledger) opt = cls(dp_average_query, num_microbatches=1, learning_rate=2.0) self.evaluate(tf.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([0.0], self.evaluate(var0)) grads = [] for _ in range(1000): grads_and_vars = opt.compute_gradients( lambda: self._loss_fn(var0, data0), [var0], gradient_tape=gradient_tape) grads.append(grads_and_vars[0][0]) # Test standard deviation is close to l2_norm_clip * noise_multiplier. self.assertNear(np.std(grads), 2.0 * 4.0, 0.5) if __name__ == '__main__': tf.test.main()