# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Training a deep NN on MovieLens with differentially private Adam optimizer.""" from absl import app from absl import flags import numpy as np import pandas as pd from scipy import stats from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_eps_poisson from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_mu_poisson from tensorflow_privacy.privacy.optimizers import dp_optimizer #### FLAGS FLAGS = flags.FLAGS flags.DEFINE_boolean( 'dpsgd', True, 'If True, train with DP-SGD. If False, ' 'train with vanilla SGD.') flags.DEFINE_float('learning_rate', .01, 'Learning rate for training') flags.DEFINE_float('noise_multiplier', 0.55, 'Ratio of the standard deviation to the clipping norm') flags.DEFINE_float('l2_norm_clip', 5, 'Clipping norm') flags.DEFINE_integer('epochs', 25, 'Number of epochs') flags.DEFINE_integer('max_mu', 2, 'GDP upper limit') flags.DEFINE_string('model_dir', None, 'Model directory') sampling_batch = 10000 microbatches = 10000 num_examples = 800167 def nn_model_fn(features, labels, mode): """NN adapted from github.com/hexiangnan/neural_collaborative_filtering.""" n_latent_factors_user = 10 n_latent_factors_movie = 10 n_latent_factors_mf = 5 user_input = tf.reshape(features['user'], [-1, 1]) item_input = tf.reshape(features['movie'], [-1, 1]) # number of users: 6040; number of movies: 3706 mf_embedding_user = tf.keras.layers.Embedding( 6040, n_latent_factors_mf, input_length=1) mf_embedding_item = tf.keras.layers.Embedding( 3706, n_latent_factors_mf, input_length=1) mlp_embedding_user = tf.keras.layers.Embedding( 6040, n_latent_factors_user, input_length=1) mlp_embedding_item = tf.keras.layers.Embedding( 3706, n_latent_factors_movie, input_length=1) # GMF part # Flatten the embedding vector as latent features in GMF mf_user_latent = tf.keras.layers.Flatten()(mf_embedding_user(user_input)) mf_item_latent = tf.keras.layers.Flatten()(mf_embedding_item(item_input)) # Element-wise multiply mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent]) # MLP part # Flatten the embedding vector as latent features in MLP mlp_user_latent = tf.keras.layers.Flatten()(mlp_embedding_user(user_input)) mlp_item_latent = tf.keras.layers.Flatten()(mlp_embedding_item(item_input)) # Concatenation of two latent features mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent]) predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector]) logits = tf.keras.layers.Dense(5)(predict_vector) # Calculate loss as a vector (to support microbatches in DP-SGD). vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits) # Define mean of loss across minibatch (for reporting through tf.Estimator). scalar_loss = tf.reduce_mean(vector_loss) # Configure the training op (for TRAIN mode). if mode == tf.estimator.ModeKeys.TRAIN: if FLAGS.dpsgd: # Use DP version of GradientDescentOptimizer. Other optimizers are # available in dp_optimizer. Most optimizers inheriting from # tf.train.Optimizer should be wrappable in differentially private # counterparts by calling dp_optimizer.optimizer_from_args(). optimizer = dp_optimizer.DPAdamGaussianOptimizer( l2_norm_clip=FLAGS.l2_norm_clip, noise_multiplier=FLAGS.noise_multiplier, num_microbatches=microbatches, learning_rate=FLAGS.learning_rate) opt_loss = vector_loss else: optimizer = tf.compat.v1.train.AdamOptimizer( learning_rate=FLAGS.learning_rate) opt_loss = scalar_loss global_step = tf.compat.v1.train.get_global_step() train_op = optimizer.minimize(loss=opt_loss, global_step=global_step) # In the following, we pass the mean of the loss (scalar_loss) rather than # the vector_loss because tf.estimator requires a scalar loss. This is only # used for evaluation and debugging by tf.estimator. The actual loss being # minimized is opt_loss defined above and passed to optimizer.minimize(). return tf.estimator.EstimatorSpec( mode=mode, loss=scalar_loss, train_op=train_op) # Add evaluation metrics (for EVAL mode). if mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = { 'rmse': tf.compat.v1.metrics.root_mean_squared_error( labels=tf.cast(labels, tf.float32), predictions=tf.tensordot( a=tf.nn.softmax(logits, axis=1), b=tf.constant(np.array([0, 1, 2, 3, 4]), dtype=tf.float32), axes=1)) } return tf.estimator.EstimatorSpec( mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops) return None def load_movielens(): """Loads MovieLens 1M as from https://grouplens.org/datasets/movielens/1m.""" data = pd.read_csv( 'ratings.dat', sep='::', header=None, names=['userId', 'movieId', 'rating', 'timestamp']) n_users = len(set(data['userId'])) n_movies = len(set(data['movieId'])) print('number of movie: ', n_movies) print('number of user: ', n_users) # give unique dense movie index to movieId data['movieIndex'] = stats.rankdata(data['movieId'], method='dense') # minus one to reduce the minimum value to 0, which is the start of col index print('number of ratings:', data.shape[0]) print('percentage of sparsity:', (1 - data.shape[0] / n_users / n_movies) * 100, '%') train, test = train_test_split(data, test_size=0.2, random_state=100) return train.values - 1, test.values - 1, np.mean(train['rating']) def main(unused_argv): tf.compat.v1.logging.set_verbosity(3) # Load training and test data. train_data, test_data, _ = load_movielens() # Instantiate the tf.Estimator. ml_classifier = tf.estimator.Estimator( model_fn=nn_model_fn, model_dir=FLAGS.model_dir) # Create tf.Estimator input functions for the training and test data. eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={ 'user': test_data[:, 0], 'movie': test_data[:, 4] }, y=test_data[:, 2], num_epochs=1, shuffle=False) # Training loop. steps_per_epoch = num_examples // sampling_batch test_accuracy_list = [] for epoch in range(1, FLAGS.epochs + 1): for _ in range(steps_per_epoch): whether = np.random.random_sample(num_examples) > ( 1 - sampling_batch / num_examples) subsampling = [i for i in np.arange(num_examples) if whether[i]] global microbatches microbatches = len(subsampling) train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={ 'user': train_data[subsampling, 0], 'movie': train_data[subsampling, 4] }, y=train_data[subsampling, 2], batch_size=len(subsampling), num_epochs=1, shuffle=True) # Train the model for one step. ml_classifier.train(input_fn=train_input_fn, steps=1) # Evaluate the model and print results eval_results = ml_classifier.evaluate(input_fn=eval_input_fn) test_accuracy = eval_results['rmse'] test_accuracy_list.append(test_accuracy) print('Test RMSE after %d epochs is: %.3f' % (epoch, test_accuracy)) # Compute the privacy budget expended so far. if FLAGS.dpsgd: eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch, 1e-6) mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch) print('For delta=1e-6, the current epsilon is: %.2f' % eps) print('For delta=1e-6, the current mu is: %.2f' % mu) if mu > FLAGS.max_mu: break else: print('Trained with vanilla non-private SGD optimizer') if __name__ == '__main__': app.run(main)