# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange import tensorflow as tf from differential_privacy.multiple_teachers import aggregation from differential_privacy.multiple_teachers import deep_cnn from differential_privacy.multiple_teachers import input from differential_privacy.multiple_teachers import metrics FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string('dataset', 'svhn', 'The name of the dataset to use') tf.flags.DEFINE_integer('nb_labels', 10, 'Number of output classes') tf.flags.DEFINE_string('data_dir','/tmp','Temporary storage') tf.flags.DEFINE_string('train_dir','/tmp/train_dir','Where model chkpt are saved') tf.flags.DEFINE_string('teachers_dir','/tmp/train_dir', 'Directory where teachers checkpoints are stored.') tf.flags.DEFINE_integer('teachers_max_steps', 3000, 'Number of steps teachers were ran.') tf.flags.DEFINE_integer('max_steps', 3000, 'Number of steps to run student.') tf.flags.DEFINE_integer('nb_teachers', 10, 'Teachers in the ensemble.') tf.flags.DEFINE_integer('stdnt_share', 1000, 'Student share (last index) of the test data') tf.flags.DEFINE_integer('lap_scale', 10, 'Scale of the Laplacian noise added for privacy') tf.flags.DEFINE_boolean('save_labels', False, 'Dump numpy arrays of labels and clean teacher votes') tf.flags.DEFINE_boolean('deeper', False, 'Activate deeper CNN model') def ensemble_preds(dataset, nb_teachers, stdnt_data): """ Given a dataset, a number of teachers, and some input data, this helper function queries each teacher for predictions on the data and returns all predictions in a single array. (That can then be aggregated into one single prediction per input using aggregation.py (cf. function prepare_student_data() below) :param dataset: string corresponding to mnist, cifar10, or svhn :param nb_teachers: number of teachers (in the ensemble) to learn from :param stdnt_data: unlabeled student training data :return: 3d array (teacher id, sample id, probability per class) """ # Compute shape of array that will hold probabilities produced by each # teacher, for each training point, and each output class result_shape = (nb_teachers, len(stdnt_data), FLAGS.nb_labels) # Create array that will hold result result = np.zeros(result_shape, dtype=np.float32) # Get predictions from each teacher for teacher_id in xrange(nb_teachers): # Compute path of checkpoint file for teacher model with ID teacher_id if FLAGS.deeper: ckpt_path = FLAGS.teachers_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_teachers_' + str(teacher_id) + '_deep.ckpt-' + str(FLAGS.teachers_max_steps - 1) #NOLINT(long-line) else: ckpt_path = FLAGS.teachers_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt-' + str(FLAGS.teachers_max_steps - 1) # NOLINT(long-line) # Get predictions on our training data and store in result array result[teacher_id] = deep_cnn.softmax_preds(stdnt_data, ckpt_path) # This can take a while when there are a lot of teachers so output status print("Computed Teacher " + str(teacher_id) + " softmax predictions") return result def prepare_student_data(dataset, nb_teachers, save=False): """ Takes a dataset name and the size of the teacher ensemble and prepares training data for the student model, according to parameters indicated in flags above. :param dataset: string corresponding to mnist, cifar10, or svhn :param nb_teachers: number of teachers (in the ensemble) to learn from :param save: if set to True, will dump student training labels predicted by the ensemble of teachers (with Laplacian noise) as npy files. It also dumps the clean votes for each class (without noise) and the labels assigned by teachers :return: pairs of (data, labels) to be used for student training and testing """ assert input.create_dir_if_needed(FLAGS.train_dir) # Load the dataset if dataset == 'svhn': test_data, test_labels = input.ld_svhn(test_only=True) elif dataset == 'cifar10': test_data, test_labels = input.ld_cifar10(test_only=True) elif dataset == 'mnist': test_data, test_labels = input.ld_mnist(test_only=True) else: print("Check value of dataset flag") return False # Make sure there is data leftover to be used as a test set assert FLAGS.stdnt_share < len(test_data) # Prepare [unlabeled] student training data (subset of test set) stdnt_data = test_data[:FLAGS.stdnt_share] # Compute teacher predictions for student training data teachers_preds = ensemble_preds(dataset, nb_teachers, stdnt_data) # Aggregate teacher predictions to get student training labels if not save: stdnt_labels = aggregation.noisy_max(teachers_preds, FLAGS.lap_scale) else: # Request clean votes and clean labels as well stdnt_labels, clean_votes, labels_for_dump = aggregation.noisy_max(teachers_preds, FLAGS.lap_scale, return_clean_votes=True) #NOLINT(long-line) # Prepare filepath for numpy dump of clean votes filepath = FLAGS.data_dir + "/" + str(dataset) + '_' + str(nb_teachers) + '_student_clean_votes_lap_' + str(FLAGS.lap_scale) + '.npy' # NOLINT(long-line) # Prepare filepath for numpy dump of clean labels filepath_labels = FLAGS.data_dir + "/" + str(dataset) + '_' + str(nb_teachers) + '_teachers_labels_lap_' + str(FLAGS.lap_scale) + '.npy' # NOLINT(long-line) # Dump clean_votes array with tf.gfile.Open(filepath, mode='w') as file_obj: np.save(file_obj, clean_votes) # Dump labels_for_dump array with tf.gfile.Open(filepath_labels, mode='w') as file_obj: np.save(file_obj, labels_for_dump) # Print accuracy of aggregated labels ac_ag_labels = metrics.accuracy(stdnt_labels, test_labels[:FLAGS.stdnt_share]) print("Accuracy of the aggregated labels: " + str(ac_ag_labels)) # Store unused part of test set for use as a test set after student training stdnt_test_data = test_data[FLAGS.stdnt_share:] stdnt_test_labels = test_labels[FLAGS.stdnt_share:] if save: # Prepare filepath for numpy dump of labels produced by noisy aggregation filepath = FLAGS.data_dir + "/" + str(dataset) + '_' + str(nb_teachers) + '_student_labels_lap_' + str(FLAGS.lap_scale) + '.npy' #NOLINT(long-line) # Dump student noisy labels array with tf.gfile.Open(filepath, mode='w') as file_obj: np.save(file_obj, stdnt_labels) return stdnt_data, stdnt_labels, stdnt_test_data, stdnt_test_labels def train_student(dataset, nb_teachers): """ This function trains a student using predictions made by an ensemble of teachers. The student and teacher models are trained using the same neural network architecture. :param dataset: string corresponding to mnist, cifar10, or svhn :param nb_teachers: number of teachers (in the ensemble) to learn from :return: True if student training went well """ assert input.create_dir_if_needed(FLAGS.train_dir) # Call helper function to prepare student data using teacher predictions stdnt_dataset = prepare_student_data(dataset, nb_teachers, save=True) # Unpack the student dataset stdnt_data, stdnt_labels, stdnt_test_data, stdnt_test_labels = stdnt_dataset # Prepare checkpoint filename and path if FLAGS.deeper: ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_student_deeper.ckpt' #NOLINT(long-line) else: ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + str(nb_teachers) + '_student.ckpt' # NOLINT(long-line) # Start student training assert deep_cnn.train(stdnt_data, stdnt_labels, ckpt_path) # Compute final checkpoint name for student (with max number of steps) ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1) # Compute student label predictions on remaining chunk of test set student_preds = deep_cnn.softmax_preds(stdnt_test_data, ckpt_path_final) # Compute teacher accuracy precision = metrics.accuracy(student_preds, stdnt_test_labels) print('Precision of student after training: ' + str(precision)) return True def main(argv=None): # pylint: disable=unused-argument # Run student training according to values specified in flags assert train_student(FLAGS.dataset, FLAGS.nb_teachers) if __name__ == '__main__': tf.app.run()