# Copyright 2018, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for differentially private optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import mock import numpy as np import tensorflow as tf from privacy.optimizers import dp_optimizer try: xrange except NameError: xrange = range def loss(val0, val1): """Loss function that is minimized at the mean of the input points.""" return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1) class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase): # Parameters for testing: optimizer, num_microbatches, expected answer. @parameterized.named_parameters( ('DPGradientDescent 1', dp_optimizer.DPGradientDescentOptimizer, 1, [-10.0, -10.0]), ('DPGradientDescent 2', dp_optimizer.DPGradientDescentOptimizer, 2, [-5.0, -5.0]), ('DPGradientDescent 4', dp_optimizer.DPGradientDescentOptimizer, 4, [-2.5, -2.5]), ('DPAdagrad 1', dp_optimizer.DPAdagradOptimizer, 1, [-10.0, -10.0]), ('DPAdagrad 2', dp_optimizer.DPAdagradOptimizer, 2, [-5.0, -5.0]), ('DPAdagrad 4', dp_optimizer.DPAdagradOptimizer, 4, [-2.5, -2.5]), ('DPAdam 1', dp_optimizer.DPAdamOptimizer, 1, [-10.0, -10.0]), ('DPAdam 2', dp_optimizer.DPAdamOptimizer, 2, [-5.0, -5.0]), ('DPAdam 4', dp_optimizer.DPAdamOptimizer, 4, [-2.5, -2.5])) def testBaseline(self, cls, num_microbatches, expected_answer): with self.cached_session() as sess: var0 = tf.Variable([1.0, 2.0]) data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]]) opt = cls( l2_norm_clip=1.0e9, noise_multiplier=0.0, num_microbatches=num_microbatches, learning_rate=2.0) self.evaluate(tf.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], self.evaluate(var0)) # Expected gradient is sum of differences divided by number of # microbatches. gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) grads_and_vars = sess.run(gradient_op) self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0]) @parameterized.named_parameters( ('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer), ('DPAdagrad', dp_optimizer.DPAdagradOptimizer), ('DPAdam', dp_optimizer.DPAdamOptimizer)) def testClippingNorm(self, cls): with self.cached_session() as sess: var0 = tf.Variable([0.0, 0.0]) data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]]) opt = cls( l2_norm_clip=1.0, noise_multiplier=0.0, num_microbatches=1, learning_rate=2.0) self.evaluate(tf.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([0.0, 0.0], self.evaluate(var0)) # Expected gradient is sum of differences. gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) grads_and_vars = sess.run(gradient_op) self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0]) @parameterized.named_parameters( ('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer), ('DPAdagrad', dp_optimizer.DPAdagradOptimizer), ('DPAdam', dp_optimizer.DPAdamOptimizer)) def testNoiseMultiplier(self, cls): with self.cached_session() as sess: var0 = tf.Variable([0.0]) data0 = tf.Variable([[0.0]]) opt = cls( l2_norm_clip=4.0, noise_multiplier=2.0, num_microbatches=1, learning_rate=2.0) self.evaluate(tf.global_variables_initializer()) # Fetch params to validate initial values self.assertAllClose([0.0], self.evaluate(var0)) gradient_op = opt.compute_gradients(loss(data0, var0), [var0]) grads = [] for _ in xrange(1000): grads_and_vars = sess.run(gradient_op) grads.append(grads_and_vars[0][0]) # Test standard deviation is close to l2_norm_clip * noise_multiplier. self.assertNear(np.std(grads), 2.0 * 4.0, 0.5) @mock.patch.object(tf, 'logging') def testComputeGradientsOverrideWarning(self, mock_logging): class SimpleOptimizer(tf.train.Optimizer): def compute_gradients(self): return 0 dp_optimizer.make_optimizer_class(SimpleOptimizer) mock_logging.warning.assert_called_once_with( 'WARNING: Calling make_optimizer_class() on class %s that overrides ' 'method compute_gradients(). Check to ensure that ' 'make_optimizer_class() does not interfere with overridden version.', 'SimpleOptimizer') if __name__ == '__main__': tf.test.main()