# Copyright 2019, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit testing for optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest from absl.testing import parameterized import tensorflow as tf from tensorflow.python import ops as _ops from tensorflow.python.framework import test_util from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import losses from tensorflow.python.keras.initializers import constant from tensorflow.python.keras.models import Model from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2 from tensorflow.python.keras.regularizers import L1L2 from tensorflow.python.platform import test from privacy.bolt_on import optimizers as opt from privacy.bolt_on.losses import StrongConvexMixin class TestModel(Model): # pylint: disable=abstract-method """BoltOn episilon-delta model. Uses 4 key steps to achieve privacy guarantees: 1. Adds noise to weights after training (output perturbation). 2. Projects weights to R after each batch 3. Limits learning rate 4. Use a strongly convex loss function (see compile) For more details on the strong convexity requirements, see: Bolt-on Differential Privacy for Scalable Stochastic Gradient Descent-based Analytics by Xi Wu et. al. """ def __init__(self, n_outputs=2, input_shape=(16,), init_value=2): """Constructor. Args: n_outputs: number of output neurons input_shape: init_value: """ super(TestModel, self).__init__(name='bolton', dynamic=False) self.n_outputs = n_outputs self.layer_input_shape = input_shape self.output_layer = tf.keras.layers.Dense( self.n_outputs, input_shape=self.layer_input_shape, kernel_regularizer=L1L2(l2=1), kernel_initializer=constant(init_value), ) class TestLoss(losses.Loss, StrongConvexMixin): """Test loss function for testing BoltOn model.""" def __init__(self, reg_lambda, c_arg, radius_constant, name='test'): super(TestLoss, self).__init__(name=name) self.reg_lambda = reg_lambda self.C = c_arg # pylint: disable=invalid-name self.radius_constant = radius_constant def radius(self): """Radius, R, of the hypothesis space W. W is a convex set that forms the hypothesis space. Returns: a tensor """ return _ops.convert_to_tensor_v2(self.radius_constant, dtype=tf.float32) def gamma(self): """Returns strongly convex parameter, gamma.""" return _ops.convert_to_tensor_v2(1, dtype=tf.float32) def beta(self, class_weight): # pylint: disable=unused-argument """Smoothness, beta. Args: class_weight: the class weights as scalar or 1d tensor, where its dimensionality is equal to the number of outputs. Returns: Beta """ return _ops.convert_to_tensor_v2(1, dtype=tf.float32) def lipchitz_constant(self, class_weight): # pylint: disable=unused-argument """Lipchitz constant, L. Args: class_weight: class weights used Returns: constant L """ return _ops.convert_to_tensor_v2(1, dtype=tf.float32) def call(self, y_true, y_pred): """Loss function that is minimized at the mean of the input points.""" return 0.5 * tf.reduce_sum( tf.math.squared_difference(y_true, y_pred), axis=1 ) def max_class_weight(self, class_weight, dtype=tf.float32): """the maximum weighting in class weights (max value) as a scalar tensor. Args: class_weight: class weights used dtype: the data type for tensor conversions. Returns: maximum class weighting as tensor scalar """ if class_weight is None: return 1 raise NotImplementedError('') def kernel_regularizer(self): """Returns the kernel_regularizer to be used. Any subclass should override this method if they want a kernel_regularizer (if required for the loss function to be StronglyConvex. """ return L1L2(l2=self.reg_lambda) class TestOptimizer(OptimizerV2): """Optimizer used for testing the BoltOn optimizer.""" def __init__(self): super(TestOptimizer, self).__init__('test') self.not_private = 'test' self.iterations = tf.constant(1, dtype=tf.float32) self._iterations = tf.constant(1, dtype=tf.float32) def _compute_gradients(self, loss, var_list, grad_loss=None): return 'test' def get_config(self): return 'test' def from_config(self, config, custom_objects=None): return 'test' def _create_slots(self): return 'test' def _resource_apply_dense(self, grad, handle): return 'test' def _resource_apply_sparse(self, grad, handle, indices): return 'test' def get_updates(self, loss, params): return 'test' def apply_gradients(self, grads_and_vars, name=None): return 'test' def minimize(self, loss, var_list, grad_loss=None, name=None): return 'test' def get_gradients(self, loss, params): return 'test' def limit_learning_rate(self): return 'test' class BoltonOptimizerTest(keras_parameterized.TestCase): """BoltOn Optimizer tests.""" @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ {'testcase_name': 'getattr', 'fn': '__getattr__', 'args': ['dtype'], 'result': tf.float32, 'test_attr': None}, {'testcase_name': 'project_weights_to_r', 'fn': 'project_weights_to_r', 'args': ['dtype'], 'result': None, 'test_attr': ''}, ]) def test_fn(self, fn, args, result, test_attr): """test that a fn of BoltOn optimizer is working as expected. Args: fn: method of Optimizer to test args: args to optimizer fn result: the expected result test_attr: None if the fn returns the test result. Otherwise, this is the attribute of BoltOn to check against result with. """ tf.random.set_seed(1) loss = TestLoss(1, 1, 1) bolton = opt.BoltOn(TestOptimizer(), loss) model = TestModel(1) model.layers[0].kernel = \ model.layers[0].kernel_initializer((model.layer_input_shape[0], model.n_outputs)) bolton._is_init = True # pylint: disable=protected-access bolton.layers = model.layers bolton.epsilon = 2 bolton.noise_distribution = 'laplace' bolton.n_outputs = 1 bolton.n_samples = 1 res = getattr(bolton, fn, None)(*args) if test_attr is not None: res = getattr(bolton, test_attr, None) if hasattr(res, 'numpy') and hasattr(result, 'numpy'): # both tensors/not res = res.numpy() result = result.numpy() self.assertEqual(res, result) @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ {'testcase_name': '1 value project to r=1', 'r': 1, 'init_value': 2, 'shape': (1,), 'n_out': 1, 'result': [[1]]}, {'testcase_name': '2 value project to r=1', 'r': 1, 'init_value': 2, 'shape': (2,), 'n_out': 1, 'result': [[0.707107], [0.707107]]}, {'testcase_name': '1 value project to r=2', 'r': 2, 'init_value': 3, 'shape': (1,), 'n_out': 1, 'result': [[2]]}, {'testcase_name': 'no project', 'r': 2, 'init_value': 1, 'shape': (1,), 'n_out': 1, 'result': [[1]]}, ]) def test_project(self, r, shape, n_out, init_value, result): """test that a fn of BoltOn optimizer is working as expected. Args: r: Radius value for StrongConvex loss function. shape: input_dimensionality n_out: output dimensionality init_value: the initial value for 'constant' kernel initializer result: the expected output after projection. """ tf.random.set_seed(1) def project_fn(r): loss = TestLoss(1, 1, r) bolton = opt.BoltOn(TestOptimizer(), loss) model = TestModel(n_out, shape, init_value) model.compile(bolton, loss) model.layers[0].kernel = \ model.layers[0].kernel_initializer((model.layer_input_shape[0], model.n_outputs)) bolton._is_init = True # pylint: disable=protected-access bolton.layers = model.layers bolton.epsilon = 2 bolton.noise_distribution = 'laplace' bolton.n_outputs = 1 bolton.n_samples = 1 bolton.project_weights_to_r() return _ops.convert_to_tensor_v2(bolton.layers[0].kernel, tf.float32) res = project_fn(r) self.assertAllClose(res, result) @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ {'testcase_name': 'normal values', 'epsilon': 2, 'noise': 'laplace', 'class_weights': 1}, ]) def test_context_manager(self, noise, epsilon, class_weights): """Tests the context manager functionality of the optimizer. Args: noise: noise distribution to pick epsilon: epsilon privacy parameter to use class_weights: class_weights to use """ @tf.function def test_run(): loss = TestLoss(1, 1, 1) bolton = opt.BoltOn(TestOptimizer(), loss) model = TestModel(1, (1,), 1) model.compile(bolton, loss) model.layers[0].kernel = \ model.layers[0].kernel_initializer((model.layer_input_shape[0], model.n_outputs)) with bolton(noise, epsilon, model.layers, class_weights, 1, 1) as _: pass return _ops.convert_to_tensor_v2(bolton.epsilon, dtype=tf.float32) epsilon = test_run() self.assertEqual(epsilon.numpy(), -1) @parameterized.named_parameters([ {'testcase_name': 'invalid noise', 'epsilon': 1, 'noise': 'not_valid', 'err_msg': 'Detected noise distribution: not_valid not one of:'}, {'testcase_name': 'invalid epsilon', 'epsilon': -1, 'noise': 'laplace', 'err_msg': 'Detected epsilon: -1. Valid range is 0 < epsilon