# Copyright 2018, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit testing for loss.py""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.keras import keras_parameterized from tensorflow.python.framework import test_util from tensorflow.python.keras.regularizers import L1L2 from absl.testing import parameterized from privacy.bolton.loss import StrongConvexBinaryCrossentropy from privacy.bolton.loss import StrongConvexHuber from privacy.bolton.loss import StrongConvexMixin class StrongConvexMixinTests(keras_parameterized.TestCase): """Tests for the StrongConvexMixin""" @parameterized.named_parameters([ {'testcase_name': 'beta not implemented', 'fn': 'beta', 'args': [1]}, {'testcase_name': 'gamma not implemented', 'fn': 'gamma', 'args': []}, {'testcase_name': 'lipchitz not implemented', 'fn': 'lipchitz_constant', 'args': [1]}, {'testcase_name': 'radius not implemented', 'fn': 'radius', 'args': []}, ]) def test_not_implemented(self, fn, args): """Test that the given fn's are not implemented on the mixin. Args: fn: fn on Mixin to test args: arguments to fn of Mixin """ with self.assertRaises(NotImplementedError): loss = StrongConvexMixin() getattr(loss, fn, None)(*args) @parameterized.named_parameters([ {'testcase_name': 'radius not implemented', 'fn': 'kernel_regularizer', 'args': []}, ]) def test_return_none(self, fn, args): """Test that fn of Mixin returns None Args: fn: fn of Mixin to test args: arguments to fn of Mixin """ loss = StrongConvexMixin() ret = getattr(loss, fn, None)(*args) self.assertEqual(ret, None) class BinaryCrossesntropyTests(keras_parameterized.TestCase): """tests for BinaryCrossesntropy StrongConvex loss""" @parameterized.named_parameters([ {'testcase_name': 'normal', 'reg_lambda': 1, 'C': 1, 'radius_constant': 1 }, ]) def test_init_params(self, reg_lambda, C, radius_constant): """Test initialization for given arguments Args: reg_lambda: initialization value for reg_lambda arg C: initialization value for C arg radius_constant: initialization value for radius_constant arg """ # test valid domains for each variable loss = StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant) self.assertIsInstance(loss, StrongConvexBinaryCrossentropy) @parameterized.named_parameters([ {'testcase_name': 'negative c', 'reg_lambda': 1, 'C': -1, 'radius_constant': 1 }, {'testcase_name': 'negative radius', 'reg_lambda': 1, 'C': 1, 'radius_constant': -1 }, {'testcase_name': 'negative lambda', 'reg_lambda': -1, 'C': 1, 'radius_constant': 1 }, ]) def test_bad_init_params(self, reg_lambda, C, radius_constant): """Test invalid domain for given params. Should return ValueError Args: reg_lambda: initialization value for reg_lambda arg C: initialization value for C arg radius_constant: initialization value for radius_constant arg """ # test valid domains for each variable with self.assertRaises(ValueError): StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant) @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ # [] for compatibility with tensorflow loss calculation {'testcase_name': 'both positive', 'logits': [10000], 'y_true': [1], 'result': 0, }, {'testcase_name': 'positive gradient negative logits', 'logits': [-10000], 'y_true': [1], 'result': 10000, }, {'testcase_name': 'positivee gradient positive logits', 'logits': [10000], 'y_true': [0], 'result': 10000, }, {'testcase_name': 'both negative', 'logits': [-10000], 'y_true': [0], 'result': 0 }, ]) def test_calculation(self, logits, y_true, result): """Test the call method to ensure it returns the correct value Args: logits: unscaled output of model y_true: label result: correct loss calculation value """ logits = tf.Variable(logits, False, dtype=tf.float32) y_true = tf.Variable(y_true, False, dtype=tf.float32) loss = StrongConvexBinaryCrossentropy(0.00001, 1, 1) loss = loss(y_true, logits) self.assertEqual(loss.numpy(), result) @parameterized.named_parameters([ {'testcase_name': 'beta', 'init_args': [1, 1, 1], 'fn': 'beta', 'args': [1], 'result': tf.constant(2, dtype=tf.float32) }, {'testcase_name': 'gamma', 'fn': 'gamma', 'init_args': [1, 1, 1], 'args': [], 'result': tf.constant(1, dtype=tf.float32), }, {'testcase_name': 'lipchitz constant', 'fn': 'lipchitz_constant', 'init_args': [1, 1, 1], 'args': [1], 'result': tf.constant(2, dtype=tf.float32), }, {'testcase_name': 'kernel regularizer', 'fn': 'kernel_regularizer', 'init_args': [1, 1, 1], 'args': [], 'result': L1L2(l2=1), }, ]) def test_fns(self, init_args, fn, args, result): """Test that fn of BinaryCrossentropy loss returns the correct result Args: init_args: init values for loss instance fn: the fn to test args: the arguments to above function result: the correct result from the fn """ loss = StrongConvexBinaryCrossentropy(*init_args) expected = getattr(loss, fn, lambda: 'fn not found')(*args) if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor expected = expected.numpy() result = result.numpy() if hasattr(expected, 'l2') and hasattr(result, 'l2'): # both l2 regularizer expected = expected.l2 result = result.l2 self.assertEqual(expected, result) class HuberTests(keras_parameterized.TestCase): """tests for BinaryCrossesntropy StrongConvex loss""" @parameterized.named_parameters([ {'testcase_name': 'normal', 'reg_lambda': 1, 'c': 1, 'radius_constant': 1, 'delta': 1, }, ]) def test_init_params(self, reg_lambda, c, radius_constant, delta): """Test initialization for given arguments Args: reg_lambda: initialization value for reg_lambda arg C: initialization value for C arg radius_constant: initialization value for radius_constant arg """ # test valid domains for each variable loss = StrongConvexHuber(reg_lambda, c, radius_constant, delta) self.assertIsInstance(loss, StrongConvexHuber) @parameterized.named_parameters([ {'testcase_name': 'negative c', 'reg_lambda': 1, 'c': -1, 'radius_constant': 1, 'delta': 1 }, {'testcase_name': 'negative radius', 'reg_lambda': 1, 'c': 1, 'radius_constant': -1, 'delta': 1 }, {'testcase_name': 'negative lambda', 'reg_lambda': -1, 'c': 1, 'radius_constant': 1, 'delta': 1 }, {'testcase_name': 'negative delta', 'reg_lambda': -1, 'c': 1, 'radius_constant': 1, 'delta': -1 }, ]) def test_bad_init_params(self, reg_lambda, c, radius_constant, delta): """Test invalid domain for given params. Should return ValueError Args: reg_lambda: initialization value for reg_lambda arg C: initialization value for C arg radius_constant: initialization value for radius_constant arg """ # test valid domains for each variable with self.assertRaises(ValueError): StrongConvexHuber(reg_lambda, c, radius_constant, delta) # test the bounds and test varied delta's @test_util.run_all_in_graph_and_eager_modes @parameterized.named_parameters([ {'testcase_name': 'delta=1,y_true=1 z>1+h decision boundary', 'logits': 2.1, 'y_true': 1, 'delta': 1, 'result': 0, }, {'testcase_name': 'delta=1,y_true=1 z<1+h decision boundary', 'logits': 1.9, 'y_true': 1, 'delta': 1, 'result': 0.01*0.25, }, {'testcase_name': 'delta=1,y_true=1 1-z< h decision boundary', 'logits': 0.1, 'y_true': 1, 'delta': 1, 'result': 1.9**2 * 0.25, }, {'testcase_name': 'delta=1,y_true=1 z < 1-h decision boundary', 'logits': -0.1, 'y_true': 1, 'delta': 1, 'result': 1.1, }, {'testcase_name': 'delta=2,y_true=1 z>1+h decision boundary', 'logits': 3.1, 'y_true': 1, 'delta': 2, 'result': 0, }, {'testcase_name': 'delta=2,y_true=1 z<1+h decision boundary', 'logits': 2.9, 'y_true': 1, 'delta': 2, 'result': 0.01*0.125, }, {'testcase_name': 'delta=2,y_true=1 1-z < h decision boundary', 'logits': 1.1, 'y_true': 1, 'delta': 2, 'result': 1.9**2 * 0.125, }, {'testcase_name': 'delta=2,y_true=1 z < 1-h decision boundary', 'logits': -1.1, 'y_true': 1, 'delta': 2, 'result': 2.1, }, {'testcase_name': 'delta=1,y_true=-1 z>1+h decision boundary', 'logits': -2.1, 'y_true': -1, 'delta': 1, 'result': 0, }, ]) def test_calculation(self, logits, y_true, delta, result): """Test the call method to ensure it returns the correct value Args: logits: unscaled output of model y_true: label result: correct loss calculation value """ logits = tf.Variable(logits, False, dtype=tf.float32) y_true = tf.Variable(y_true, False, dtype=tf.float32) loss = StrongConvexHuber(0.00001, 1, 1, delta) loss = loss(y_true, logits) self.assertAllClose(loss.numpy(), result) @parameterized.named_parameters([ {'testcase_name': 'beta', 'init_args': [1, 1, 1, 1], 'fn': 'beta', 'args': [1], 'result': tf.Variable(1.5, dtype=tf.float32) }, {'testcase_name': 'gamma', 'fn': 'gamma', 'init_args': [1, 1, 1, 1], 'args': [], 'result': tf.Variable(1, dtype=tf.float32), }, {'testcase_name': 'lipchitz constant', 'fn': 'lipchitz_constant', 'init_args': [1, 1, 1, 1], 'args': [1], 'result': tf.Variable(2, dtype=tf.float32), }, {'testcase_name': 'kernel regularizer', 'fn': 'kernel_regularizer', 'init_args': [1, 1, 1, 1], 'args': [], 'result': L1L2(l2=1), }, ]) def test_fns(self, init_args, fn, args, result): """Test that fn of BinaryCrossentropy loss returns the correct result Args: init_args: init values for loss instance fn: the fn to test args: the arguments to above function result: the correct result from the fn """ loss = StrongConvexHuber(*init_args) expected = getattr(loss, fn, lambda: 'fn not found')(*args) if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor expected = expected.numpy() result = result.numpy() if hasattr(expected, 'l2') and hasattr(result, 'l2'): # both l2 regularizer expected = expected.l2 result = result.l2 self.assertEqual(expected, result) if __name__ == '__main__': tf.test.main()