tensorflow_privacy/research/dp_newton
2023-07-11 16:02:29 -07:00
..
src COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/privacy/pull/489 from mhaghifam:dp-second-order-optimization 024904810a8f130d554cc3f04713d5562ccfe5df 2023-07-11 16:02:29 -07:00
README.md COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/privacy/pull/489 from mhaghifam:dp-second-order-optimization 024904810a8f130d554cc3f04713d5562ccfe5df 2023-07-11 16:02:29 -07:00
run_privacy_utility COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/privacy/pull/489 from mhaghifam:dp-second-order-optimization 024904810a8f130d554cc3f04713d5562ccfe5df 2023-07-11 16:02:29 -07:00

Project Title

Faster Differentially Private Convex Optimization via Second-Order Methods https://arxiv.org/abs/2112.03570
by Arun Ganesh, Mahdi Haghifam, Thomas Steinke, Abhradeep Thakurta.

Description

Implementation of the optimizatoin algorithms proposed in https://arxiv.org/abs/2112.03570

Getting Started

You will need to install fairly standard dependencies

run 'run_privacy_utility' to compare the convergence speed and excess loss of different algorithms.

Citation

You can cite this paper with

@article{ganesh2023faster,
  title={Faster Differentially Private Convex Optimization
    via Second-Order Methods},
  author={Ganesh, Arun and Haghifam, Mahdi and Steinke, Thomas
    and Thakurta, Abhradeep},
  journal={arXiv preprint arXiv:2305.13209},
  year={2023}
}