7eea74a6a1
PiperOrigin-RevId: 446832781
622 lines
20 KiB
Python
622 lines
20 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""RDP analysis of the Sampled Gaussian Mechanism.
|
|
|
|
Functionality for computing Renyi differential privacy (RDP) of an additive
|
|
Sampled Gaussian Mechanism (SGM). Its public interface consists of two methods:
|
|
compute_rdp(q, noise_multiplier, T, orders) computes RDP for SGM iterated
|
|
T times.
|
|
get_privacy_spent(orders, rdp, target_eps, target_delta) computes delta
|
|
(or eps) given RDP at multiple orders and
|
|
a target value for eps (or delta).
|
|
|
|
Example use:
|
|
|
|
Suppose that we have run an SGM applied to a function with l2-sensitivity 1.
|
|
Its parameters are given as a list of tuples (q1, sigma1, T1), ...,
|
|
(qk, sigma_k, Tk), and we wish to compute eps for a given delta.
|
|
The example code would be:
|
|
|
|
max_order = 32
|
|
orders = range(2, max_order + 1)
|
|
rdp = np.zeros_like(orders, dtype=float)
|
|
for q, sigma, T in parameters:
|
|
rdp += rdp_accountant.compute_rdp(q, sigma, T, orders)
|
|
eps, _, opt_order = rdp_accountant.get_privacy_spent(rdp, target_delta=delta)
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import sys
|
|
|
|
import numpy as np
|
|
from scipy import special
|
|
import six
|
|
|
|
########################
|
|
# LOG-SPACE ARITHMETIC #
|
|
########################
|
|
|
|
|
|
def _log_add(logx, logy):
|
|
"""Add two numbers in the log space."""
|
|
a, b = min(logx, logy), max(logx, logy)
|
|
if a == -np.inf: # adding 0
|
|
return b
|
|
# Use exp(a) + exp(b) = (exp(a - b) + 1) * exp(b)
|
|
return math.log1p(math.exp(a - b)) + b # log1p(x) = log(x + 1)
|
|
|
|
|
|
def _log_sub(logx, logy):
|
|
"""Subtract two numbers in the log space. Answer must be non-negative."""
|
|
if logx < logy:
|
|
raise ValueError("The result of subtraction must be non-negative.")
|
|
if logy == -np.inf: # subtracting 0
|
|
return logx
|
|
if logx == logy:
|
|
return -np.inf # 0 is represented as -np.inf in the log space.
|
|
|
|
try:
|
|
# Use exp(x) - exp(y) = (exp(x - y) - 1) * exp(y).
|
|
return math.log(math.expm1(logx - logy)) + logy # expm1(x) = exp(x) - 1
|
|
except OverflowError:
|
|
return logx
|
|
|
|
|
|
def _log_sub_sign(logx, logy):
|
|
"""Returns log(exp(logx)-exp(logy)) and its sign."""
|
|
if logx > logy:
|
|
s = True
|
|
mag = logx + np.log(1 - np.exp(logy - logx))
|
|
elif logx < logy:
|
|
s = False
|
|
mag = logy + np.log(1 - np.exp(logx - logy))
|
|
else:
|
|
s = True
|
|
mag = -np.inf
|
|
|
|
return s, mag
|
|
|
|
|
|
def _log_print(logx):
|
|
"""Pretty print."""
|
|
if logx < math.log(sys.float_info.max):
|
|
return "{}".format(math.exp(logx))
|
|
else:
|
|
return "exp({})".format(logx)
|
|
|
|
|
|
def _log_comb(n, k):
|
|
return (special.gammaln(n + 1) - special.gammaln(k + 1) -
|
|
special.gammaln(n - k + 1))
|
|
|
|
|
|
def _compute_log_a_int(q, sigma, alpha):
|
|
"""Compute log(A_alpha) for integer alpha. 0 < q < 1."""
|
|
assert isinstance(alpha, six.integer_types)
|
|
|
|
# Initialize with 0 in the log space.
|
|
log_a = -np.inf
|
|
|
|
for i in range(alpha + 1):
|
|
log_coef_i = (
|
|
_log_comb(alpha, i) + i * math.log(q) + (alpha - i) * math.log(1 - q))
|
|
|
|
s = log_coef_i + (i * i - i) / (2 * (sigma**2))
|
|
log_a = _log_add(log_a, s)
|
|
|
|
return float(log_a)
|
|
|
|
|
|
def _compute_log_a_frac(q, sigma, alpha):
|
|
"""Compute log(A_alpha) for fractional alpha. 0 < q < 1."""
|
|
# The two parts of A_alpha, integrals over (-inf,z0] and [z0, +inf), are
|
|
# initialized to 0 in the log space:
|
|
log_a0, log_a1 = -np.inf, -np.inf
|
|
i = 0
|
|
|
|
z0 = sigma**2 * math.log(1 / q - 1) + .5
|
|
|
|
while True: # do ... until loop
|
|
coef = special.binom(alpha, i)
|
|
log_coef = math.log(abs(coef))
|
|
j = alpha - i
|
|
|
|
log_t0 = log_coef + i * math.log(q) + j * math.log(1 - q)
|
|
log_t1 = log_coef + j * math.log(q) + i * math.log(1 - q)
|
|
|
|
log_e0 = math.log(.5) + _log_erfc((i - z0) / (math.sqrt(2) * sigma))
|
|
log_e1 = math.log(.5) + _log_erfc((z0 - j) / (math.sqrt(2) * sigma))
|
|
|
|
log_s0 = log_t0 + (i * i - i) / (2 * (sigma**2)) + log_e0
|
|
log_s1 = log_t1 + (j * j - j) / (2 * (sigma**2)) + log_e1
|
|
|
|
if coef > 0:
|
|
log_a0 = _log_add(log_a0, log_s0)
|
|
log_a1 = _log_add(log_a1, log_s1)
|
|
else:
|
|
log_a0 = _log_sub(log_a0, log_s0)
|
|
log_a1 = _log_sub(log_a1, log_s1)
|
|
|
|
i += 1
|
|
if max(log_s0, log_s1) < -30:
|
|
break
|
|
|
|
return _log_add(log_a0, log_a1)
|
|
|
|
|
|
def _compute_log_a(q, sigma, alpha):
|
|
"""Compute log(A_alpha) for any positive finite alpha."""
|
|
if float(alpha).is_integer():
|
|
return _compute_log_a_int(q, sigma, int(alpha))
|
|
else:
|
|
return _compute_log_a_frac(q, sigma, alpha)
|
|
|
|
|
|
def _log_erfc(x):
|
|
"""Compute log(erfc(x)) with high accuracy for large x."""
|
|
try:
|
|
return math.log(2) + special.log_ndtr(-x * 2**.5)
|
|
except NameError:
|
|
# If log_ndtr is not available, approximate as follows:
|
|
r = special.erfc(x)
|
|
if r == 0.0:
|
|
# Using the Laurent series at infinity for the tail of the erfc function:
|
|
# erfc(x) ~ exp(-x^2-.5/x^2+.625/x^4)/(x*pi^.5)
|
|
# To verify in Mathematica:
|
|
# Series[Log[Erfc[x]] + Log[x] + Log[Pi]/2 + x^2, {x, Infinity, 6}]
|
|
return (-math.log(math.pi) / 2 - math.log(x) - x**2 - .5 * x**-2 +
|
|
.625 * x**-4 - 37. / 24. * x**-6 + 353. / 64. * x**-8)
|
|
else:
|
|
return math.log(r)
|
|
|
|
|
|
def _compute_delta(orders, rdp, eps):
|
|
"""Compute delta given a list of RDP values and target epsilon.
|
|
|
|
Args:
|
|
orders: An array (or a scalar) of orders.
|
|
rdp: A list (or a scalar) of RDP guarantees.
|
|
eps: The target epsilon.
|
|
|
|
Returns:
|
|
Pair of (delta, optimal_order).
|
|
|
|
Raises:
|
|
ValueError: If input is malformed.
|
|
|
|
"""
|
|
orders_vec = np.atleast_1d(orders)
|
|
rdp_vec = np.atleast_1d(rdp)
|
|
|
|
if eps < 0:
|
|
raise ValueError("Value of privacy loss bound epsilon must be >=0.")
|
|
if len(orders_vec) != len(rdp_vec):
|
|
raise ValueError("Input lists must have the same length.")
|
|
|
|
# Basic bound (see https://arxiv.org/abs/1702.07476 Proposition 3 in v3):
|
|
# delta = min( np.exp((rdp_vec - eps) * (orders_vec - 1)) )
|
|
|
|
# Improved bound from https://arxiv.org/abs/2004.00010 Proposition 12 (in v4):
|
|
logdeltas = [] # work in log space to avoid overflows
|
|
for (a, r) in zip(orders_vec, rdp_vec):
|
|
if a < 1:
|
|
raise ValueError("Renyi divergence order must be >=1.")
|
|
if r < 0:
|
|
raise ValueError("Renyi divergence must be >=0.")
|
|
# For small alpha, we are better of with bound via KL divergence:
|
|
# delta <= sqrt(1-exp(-KL)).
|
|
# Take a min of the two bounds.
|
|
logdelta = 0.5 * math.log1p(-math.exp(-r))
|
|
if a > 1.01:
|
|
# This bound is not numerically stable as alpha->1.
|
|
# Thus we have a min value for alpha.
|
|
# The bound is also not useful for small alpha, so doesn't matter.
|
|
rdp_bound = (a - 1) * (r - eps + math.log1p(-1 / a)) - math.log(a)
|
|
logdelta = min(logdelta, rdp_bound)
|
|
|
|
logdeltas.append(logdelta)
|
|
|
|
idx_opt = np.argmin(logdeltas)
|
|
return min(math.exp(logdeltas[idx_opt]), 1.), orders_vec[idx_opt]
|
|
|
|
|
|
def _compute_eps(orders, rdp, delta):
|
|
"""Compute epsilon given a list of RDP values and target delta.
|
|
|
|
Args:
|
|
orders: An array (or a scalar) of orders.
|
|
rdp: A list (or a scalar) of RDP guarantees.
|
|
delta: The target delta.
|
|
|
|
Returns:
|
|
Pair of (eps, optimal_order).
|
|
|
|
Raises:
|
|
ValueError: If input is malformed.
|
|
|
|
"""
|
|
orders_vec = np.atleast_1d(orders)
|
|
rdp_vec = np.atleast_1d(rdp)
|
|
|
|
if delta <= 0:
|
|
raise ValueError("Privacy failure probability bound delta must be >0.")
|
|
if len(orders_vec) != len(rdp_vec):
|
|
raise ValueError("Input lists must have the same length.")
|
|
|
|
# Basic bound (see https://arxiv.org/abs/1702.07476 Proposition 3 in v3):
|
|
# eps = min( rdp_vec - math.log(delta) / (orders_vec - 1) )
|
|
|
|
# Improved bound from https://arxiv.org/abs/2004.00010 Proposition 12 (in v4).
|
|
# Also appears in https://arxiv.org/abs/2001.05990 Equation 20 (in v1).
|
|
eps_vec = []
|
|
for (a, r) in zip(orders_vec, rdp_vec):
|
|
if a < 1:
|
|
raise ValueError("Renyi divergence order must be >=1.")
|
|
if r < 0:
|
|
raise ValueError("Renyi divergence must be >=0.")
|
|
|
|
if delta**2 + math.expm1(-r) >= 0:
|
|
# In this case, we can simply bound via KL divergence:
|
|
# delta <= sqrt(1-exp(-KL)).
|
|
eps = 0 # No need to try further computation if we have eps = 0.
|
|
elif a > 1.01:
|
|
# This bound is not numerically stable as alpha->1.
|
|
# Thus we have a min value of alpha.
|
|
# The bound is also not useful for small alpha, so doesn't matter.
|
|
eps = r + math.log1p(-1 / a) - math.log(delta * a) / (a - 1)
|
|
else:
|
|
# In this case we can't do anything. E.g., asking for delta = 0.
|
|
eps = np.inf
|
|
eps_vec.append(eps)
|
|
|
|
idx_opt = np.argmin(eps_vec)
|
|
return max(0, eps_vec[idx_opt]), orders_vec[idx_opt]
|
|
|
|
|
|
def _stable_inplace_diff_in_log(vec, signs, n=-1):
|
|
"""Replaces the first n-1 dims of vec with the log of abs difference operator.
|
|
|
|
Args:
|
|
vec: numpy array of floats with size larger than 'n'
|
|
signs: Optional numpy array of bools with the same size as vec in case one
|
|
needs to compute partial differences vec and signs jointly describe a
|
|
vector of real numbers' sign and abs in log scale.
|
|
n: Optonal upper bound on number of differences to compute. If negative, all
|
|
differences are computed.
|
|
|
|
Returns:
|
|
The first n-1 dimension of vec and signs will store the log-abs and sign of
|
|
the difference.
|
|
|
|
Raises:
|
|
ValueError: If input is malformed.
|
|
"""
|
|
|
|
assert vec.shape == signs.shape
|
|
if n < 0:
|
|
n = np.max(vec.shape) - 1
|
|
else:
|
|
assert np.max(vec.shape) >= n + 1
|
|
for j in range(0, n, 1):
|
|
if signs[j] == signs[j + 1]: # When the signs are the same
|
|
# if the signs are both positive, then we can just use the standard one
|
|
signs[j], vec[j] = _log_sub_sign(vec[j + 1], vec[j])
|
|
# otherwise, we do that but toggle the sign
|
|
if not signs[j + 1]:
|
|
signs[j] = ~signs[j]
|
|
else: # When the signs are different.
|
|
vec[j] = _log_add(vec[j], vec[j + 1])
|
|
signs[j] = signs[j + 1]
|
|
|
|
|
|
def _get_forward_diffs(fun, n):
|
|
"""Computes up to nth order forward difference evaluated at 0.
|
|
|
|
See Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf
|
|
|
|
Args:
|
|
fun: Function to compute forward differences of.
|
|
n: Number of differences to compute.
|
|
|
|
Returns:
|
|
Pair (deltas, signs_deltas) of the log deltas and their signs.
|
|
"""
|
|
func_vec = np.zeros(n + 3)
|
|
signs_func_vec = np.ones(n + 3, dtype=bool)
|
|
|
|
# ith coordinate of deltas stores log(abs(ith order discrete derivative))
|
|
deltas = np.zeros(n + 2)
|
|
signs_deltas = np.zeros(n + 2, dtype=bool)
|
|
for i in range(1, n + 3, 1):
|
|
func_vec[i] = fun(1.0 * (i - 1))
|
|
for i in range(0, n + 2, 1):
|
|
# Diff in log scale
|
|
_stable_inplace_diff_in_log(func_vec, signs_func_vec, n=n + 2 - i)
|
|
deltas[i] = func_vec[0]
|
|
signs_deltas[i] = signs_func_vec[0]
|
|
return deltas, signs_deltas
|
|
|
|
|
|
def _compute_rdp(q, sigma, alpha):
|
|
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
|
|
|
|
Args:
|
|
q: The sampling rate.
|
|
sigma: The std of the additive Gaussian noise.
|
|
alpha: The order at which RDP is computed.
|
|
|
|
Returns:
|
|
RDP at alpha, can be np.inf.
|
|
"""
|
|
if q == 0:
|
|
return 0
|
|
|
|
if q == 1.:
|
|
return alpha / (2 * sigma**2)
|
|
|
|
if np.isinf(alpha):
|
|
return np.inf
|
|
|
|
return _compute_log_a(q, sigma, alpha) / (alpha - 1)
|
|
|
|
|
|
def compute_rdp(q, noise_multiplier, steps, orders):
|
|
"""Computes RDP of the Sampled Gaussian Mechanism.
|
|
|
|
Args:
|
|
q: The sampling rate.
|
|
noise_multiplier: The ratio of the standard deviation of the Gaussian noise
|
|
to the l2-sensitivity of the function to which it is added.
|
|
steps: The number of steps.
|
|
orders: An array (or a scalar) of RDP orders.
|
|
|
|
Returns:
|
|
The RDPs at all orders. Can be `np.inf`.
|
|
"""
|
|
if np.isscalar(orders):
|
|
rdp = _compute_rdp(q, noise_multiplier, orders)
|
|
else:
|
|
rdp = np.array(
|
|
[_compute_rdp(q, noise_multiplier, order) for order in orders])
|
|
|
|
return rdp * steps
|
|
|
|
|
|
def compute_rdp_sample_without_replacement(q, noise_multiplier, steps, orders):
|
|
"""Compute RDP of Gaussian Mechanism using sampling without replacement.
|
|
|
|
This function applies to the following schemes:
|
|
1. Sampling w/o replacement: Sample a uniformly random subset of size m = q*n.
|
|
2. ``Replace one data point'' version of differential privacy, i.e., n is
|
|
considered public information.
|
|
|
|
Reference: Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf (A strengthened
|
|
version applies subsampled-Gaussian mechanism)
|
|
- Wang, Balle, Kasiviswanathan. "Subsampled Renyi Differential Privacy and
|
|
Analytical Moments Accountant." AISTATS'2019.
|
|
|
|
Args:
|
|
q: The sampling proportion = m / n. Assume m is an integer <= n.
|
|
noise_multiplier: The ratio of the standard deviation of the Gaussian noise
|
|
to the l2-sensitivity of the function to which it is added.
|
|
steps: The number of steps.
|
|
orders: An array (or a scalar) of RDP orders.
|
|
|
|
Returns:
|
|
The RDPs at all orders, can be np.inf.
|
|
"""
|
|
if np.isscalar(orders):
|
|
rdp = _compute_rdp_sample_without_replacement_scalar(
|
|
q, noise_multiplier, orders)
|
|
else:
|
|
rdp = np.array([
|
|
_compute_rdp_sample_without_replacement_scalar(q, noise_multiplier,
|
|
order)
|
|
for order in orders
|
|
])
|
|
|
|
return rdp * steps
|
|
|
|
|
|
def _compute_rdp_sample_without_replacement_scalar(q, sigma, alpha):
|
|
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
|
|
|
|
Args:
|
|
q: The sampling proportion = m / n. Assume m is an integer <= n.
|
|
sigma: The std of the additive Gaussian noise.
|
|
alpha: The order at which RDP is computed.
|
|
|
|
Returns:
|
|
RDP at alpha, can be np.inf.
|
|
"""
|
|
|
|
assert (q <= 1) and (q >= 0) and (alpha >= 1)
|
|
|
|
if q == 0:
|
|
return 0
|
|
|
|
if q == 1.:
|
|
return alpha / (2 * sigma**2)
|
|
|
|
if np.isinf(alpha):
|
|
return np.inf
|
|
|
|
if float(alpha).is_integer():
|
|
return _compute_rdp_sample_without_replacement_int(q, sigma, alpha) / (
|
|
alpha - 1)
|
|
else:
|
|
# When alpha not an integer, we apply Corollary 10 of [WBK19] to interpolate
|
|
# the CGF and obtain an upper bound
|
|
alpha_f = math.floor(alpha)
|
|
alpha_c = math.ceil(alpha)
|
|
|
|
x = _compute_rdp_sample_without_replacement_int(q, sigma, alpha_f)
|
|
y = _compute_rdp_sample_without_replacement_int(q, sigma, alpha_c)
|
|
t = alpha - alpha_f
|
|
return ((1 - t) * x + t * y) / (alpha - 1)
|
|
|
|
|
|
def _compute_rdp_sample_without_replacement_int(q, sigma, alpha):
|
|
"""Compute log(A_alpha) for integer alpha, subsampling without replacement.
|
|
|
|
When alpha is smaller than max_alpha, compute the bound Theorem 27 exactly,
|
|
otherwise compute the bound with Stirling approximation.
|
|
|
|
Args:
|
|
q: The sampling proportion = m / n. Assume m is an integer <= n.
|
|
sigma: The std of the additive Gaussian noise.
|
|
alpha: The order at which RDP is computed.
|
|
|
|
Returns:
|
|
RDP at alpha, can be np.inf.
|
|
"""
|
|
|
|
max_alpha = 256
|
|
assert isinstance(alpha, six.integer_types)
|
|
|
|
if np.isinf(alpha):
|
|
return np.inf
|
|
elif alpha == 1:
|
|
return 0
|
|
|
|
def cgf(x):
|
|
# Return rdp(x+1)*x, the rdp of Gaussian mechanism is alpha/(2*sigma**2)
|
|
return x * 1.0 * (x + 1) / (2.0 * sigma**2)
|
|
|
|
def func(x):
|
|
# Return the rdp of Gaussian mechanism
|
|
return 1.0 * x / (2.0 * sigma**2)
|
|
|
|
# Initialize with 1 in the log space.
|
|
log_a = 0
|
|
# Calculates the log term when alpha = 2
|
|
log_f2m1 = func(2.0) + np.log(1 - np.exp(-func(2.0)))
|
|
if alpha <= max_alpha:
|
|
# We need forward differences of exp(cgf)
|
|
# The following line is the numerically stable way of implementing it.
|
|
# The output is in polar form with logarithmic magnitude
|
|
deltas, _ = _get_forward_diffs(cgf, alpha)
|
|
# Compute the bound exactly requires book keeping of O(alpha**2)
|
|
|
|
for i in range(2, alpha + 1):
|
|
if i == 2:
|
|
s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(
|
|
np.log(4) + log_f2m1,
|
|
func(2.0) + np.log(2))
|
|
elif i > 2:
|
|
delta_lo = deltas[int(2 * np.floor(i / 2.0)) - 1]
|
|
delta_hi = deltas[int(2 * np.ceil(i / 2.0)) - 1]
|
|
s = np.log(4) + 0.5 * (delta_lo + delta_hi)
|
|
s = np.minimum(s, np.log(2) + cgf(i - 1))
|
|
s += i * np.log(q) + _log_comb(alpha, i)
|
|
log_a = _log_add(log_a, s)
|
|
return float(log_a)
|
|
else:
|
|
# Compute the bound with stirling approximation. Everything is O(x) now.
|
|
for i in range(2, alpha + 1):
|
|
if i == 2:
|
|
s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(
|
|
np.log(4) + log_f2m1,
|
|
func(2.0) + np.log(2))
|
|
else:
|
|
s = np.log(2) + cgf(i - 1) + i * np.log(q) + _log_comb(alpha, i)
|
|
log_a = _log_add(log_a, s)
|
|
|
|
return log_a
|
|
|
|
|
|
def compute_heterogenous_rdp(sampling_probabilities, noise_multipliers,
|
|
steps_list, orders):
|
|
"""Computes RDP of Heteregoneous Applications of Sampled Gaussian Mechanisms.
|
|
|
|
Args:
|
|
sampling_probabilities: A list containing the sampling rates.
|
|
noise_multipliers: A list containing the noise multipliers: the ratio of the
|
|
standard deviation of the Gaussian noise to the l2-sensitivity of the
|
|
function to which it is added.
|
|
steps_list: A list containing the number of steps at each
|
|
`sampling_probability` and `noise_multiplier`.
|
|
orders: An array (or a scalar) of RDP orders.
|
|
|
|
Returns:
|
|
The RDPs at all orders. Can be `np.inf`.
|
|
"""
|
|
assert len(sampling_probabilities) == len(noise_multipliers)
|
|
|
|
rdp = 0
|
|
for q, noise_multiplier, steps in zip(sampling_probabilities,
|
|
noise_multipliers, steps_list):
|
|
rdp += compute_rdp(q, noise_multiplier, steps, orders)
|
|
|
|
return rdp
|
|
|
|
|
|
def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
|
|
"""Computes delta (or eps) for given eps (or delta) from RDP values.
|
|
|
|
Args:
|
|
orders: An array (or a scalar) of RDP orders.
|
|
rdp: An array of RDP values. Must be of the same length as the orders list.
|
|
target_eps: If not `None`, the epsilon for which we compute the
|
|
corresponding delta.
|
|
target_delta: If not `None`, the delta for which we compute the
|
|
corresponding epsilon. Exactly one of `target_eps` and `target_delta` must
|
|
be `None`.
|
|
|
|
Returns:
|
|
A tuple of epsilon, delta, and the optimal order.
|
|
|
|
Raises:
|
|
ValueError: If target_eps and target_delta are messed up.
|
|
"""
|
|
if target_eps is None and target_delta is None:
|
|
raise ValueError(
|
|
"Exactly one out of eps and delta must be None. (Both are).")
|
|
|
|
if target_eps is not None and target_delta is not None:
|
|
raise ValueError(
|
|
"Exactly one out of eps and delta must be None. (None is).")
|
|
|
|
if target_eps is not None:
|
|
delta, opt_order = _compute_delta(orders, rdp, target_eps)
|
|
return target_eps, delta, opt_order
|
|
else:
|
|
eps, opt_order = _compute_eps(orders, rdp, target_delta)
|
|
return eps, target_delta, opt_order
|
|
|
|
|
|
def compute_rdp_from_ledger(ledger, orders):
|
|
"""Computes RDP of Sampled Gaussian Mechanism from ledger.
|
|
|
|
Args:
|
|
ledger: A formatted privacy ledger.
|
|
orders: An array (or a scalar) of RDP orders.
|
|
|
|
Returns:
|
|
RDP at all orders. Can be `np.inf`.
|
|
"""
|
|
total_rdp = np.zeros_like(orders, dtype=float)
|
|
for sample in ledger:
|
|
# Compute equivalent z from l2_clip_bounds and noise stddevs in sample.
|
|
# See https://arxiv.org/pdf/1812.06210.pdf for derivation of this formula.
|
|
effective_z = sum([
|
|
(q.noise_stddev / q.l2_norm_bound)**-2 for q in sample.queries
|
|
])**-0.5
|
|
total_rdp += compute_rdp(sample.selection_probability, effective_z, 1,
|
|
orders)
|
|
return total_rdp
|