01ab549902
PiperOrigin-RevId: 227552068
154 lines
5.6 KiB
Python
154 lines
5.6 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for rdp_accountant.py."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import sys
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
import mpmath as mp
|
|
import numpy as np
|
|
|
|
from privacy.analysis import rdp_accountant
|
|
|
|
class TestGaussianMoments(parameterized.TestCase):
|
|
#################################
|
|
# HELPER FUNCTIONS: #
|
|
# Exact computations using #
|
|
# multi-precision arithmetic. #
|
|
#################################
|
|
|
|
def _log_float_mp(self, x):
|
|
# Convert multi-precision input to float log space.
|
|
if x >= sys.float_info.min:
|
|
return float(mp.log(x))
|
|
else:
|
|
return -np.inf
|
|
|
|
def _integral_mp(self, fn, bounds=(-mp.inf, mp.inf)):
|
|
integral, _ = mp.quad(fn, bounds, error=True, maxdegree=8)
|
|
return integral
|
|
|
|
def _distributions_mp(self, sigma, q):
|
|
|
|
def _mu0(x):
|
|
return mp.npdf(x, mu=0, sigma=sigma)
|
|
|
|
def _mu1(x):
|
|
return mp.npdf(x, mu=1, sigma=sigma)
|
|
|
|
def _mu(x):
|
|
return (1 - q) * _mu0(x) + q * _mu1(x)
|
|
|
|
return _mu0, _mu # Closure!
|
|
|
|
def _mu1_over_mu0(self, x, sigma):
|
|
# Closed-form expression for N(1, sigma^2) / N(0, sigma^2) at x.
|
|
return mp.exp((2 * x - 1) / (2 * sigma**2))
|
|
|
|
def _mu_over_mu0(self, x, q, sigma):
|
|
return (1 - q) + q * self._mu1_over_mu0(x, sigma)
|
|
|
|
def _compute_a_mp(self, sigma, q, alpha):
|
|
"""Compute A_alpha for arbitrary alpha by numerical integration."""
|
|
mu0, _ = self._distributions_mp(sigma, q)
|
|
a_alpha_fn = lambda z: mu0(z) * self._mu_over_mu0(z, q, sigma)**alpha
|
|
a_alpha = self._integral_mp(a_alpha_fn)
|
|
return a_alpha
|
|
|
|
# TEST ROUTINES
|
|
def test_compute_rdp_no_data(self):
|
|
# q = 0
|
|
self.assertEqual(rdp_accountant.compute_rdp(0, 10, 1, 20), 0)
|
|
|
|
def test_compute_rdp_no_sampling(self):
|
|
# q = 1, RDP = alpha/2 * sigma^2
|
|
self.assertEqual(rdp_accountant.compute_rdp(1, 10, 1, 20), 0.1)
|
|
|
|
def test_compute_rdp_scalar(self):
|
|
rdp_scalar = rdp_accountant.compute_rdp(0.1, 2, 10, 5)
|
|
self.assertAlmostEqual(rdp_scalar, 0.07737, places=5)
|
|
|
|
def test_compute_rdp_sequence(self):
|
|
rdp_vec = rdp_accountant.compute_rdp(0.01, 2.5, 50,
|
|
[1.5, 2.5, 5, 50, 100, np.inf])
|
|
self.assertSequenceAlmostEqual(
|
|
rdp_vec, [0.00065, 0.001085, 0.00218075, 0.023846, 167.416307, np.inf],
|
|
delta=1e-5)
|
|
|
|
params = ({'q': 1e-7, 'sigma': .1, 'order': 1.01},
|
|
{'q': 1e-6, 'sigma': .1, 'order': 256},
|
|
{'q': 1e-5, 'sigma': .1, 'order': 256.1},
|
|
{'q': 1e-6, 'sigma': 1, 'order': 27},
|
|
{'q': 1e-4, 'sigma': 1., 'order': 1.5},
|
|
{'q': 1e-3, 'sigma': 1., 'order': 2},
|
|
{'q': .01, 'sigma': 10, 'order': 20},
|
|
{'q': .1, 'sigma': 100, 'order': 20.5},
|
|
{'q': .99, 'sigma': .1, 'order': 256},
|
|
{'q': .999, 'sigma': 100, 'order': 256.1})
|
|
|
|
# pylint:disable=undefined-variable
|
|
@parameterized.parameters(p for p in params)
|
|
def test_compute_log_a_equals_mp(self, q, sigma, order):
|
|
# Compare the cheap computation of log(A) with an expensive, multi-precision
|
|
# computation.
|
|
log_a = rdp_accountant._compute_log_a(q, sigma, order)
|
|
log_a_mp = self._log_float_mp(self._compute_a_mp(sigma, q, order))
|
|
np.testing.assert_allclose(log_a, log_a_mp, rtol=1e-4)
|
|
|
|
def test_get_privacy_spent_check_target_delta(self):
|
|
orders = range(2, 33)
|
|
rdp = rdp_accountant.compute_rdp(0.01, 4, 10000, orders)
|
|
eps, _, opt_order = rdp_accountant.get_privacy_spent(
|
|
orders, rdp, target_delta=1e-5)
|
|
self.assertAlmostEqual(eps, 1.258575, places=5)
|
|
self.assertEqual(opt_order, 20)
|
|
|
|
def test_get_privacy_spent_check_target_eps(self):
|
|
orders = range(2, 33)
|
|
rdp = rdp_accountant.compute_rdp(0.01, 4, 10000, orders)
|
|
_, delta, opt_order = rdp_accountant.get_privacy_spent(
|
|
orders, rdp, target_eps=1.258575)
|
|
self.assertAlmostEqual(delta, 1e-5)
|
|
self.assertEqual(opt_order, 20)
|
|
|
|
def test_check_composition(self):
|
|
orders = (1.25, 1.5, 1.75, 2., 2.5, 3., 4., 5., 6., 7., 8., 10., 12., 14.,
|
|
16., 20., 24., 28., 32., 64., 256.)
|
|
|
|
rdp = rdp_accountant.compute_rdp(q=1e-4,
|
|
noise_multiplier=.4,
|
|
steps=40000,
|
|
orders=orders)
|
|
|
|
eps, _, opt_order = rdp_accountant.get_privacy_spent(orders, rdp,
|
|
target_delta=1e-6)
|
|
|
|
rdp += rdp_accountant.compute_rdp(q=0.1,
|
|
noise_multiplier=2,
|
|
steps=100,
|
|
orders=orders)
|
|
eps, _, opt_order = rdp_accountant.get_privacy_spent(orders, rdp,
|
|
target_delta=1e-5)
|
|
self.assertAlmostEqual(eps, 8.509656, places=5)
|
|
self.assertEqual(opt_order, 2.5)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main()
|