d5dcfec745
set_denominator was added so that the batch size doesn't need to be specified before constructing the optimizer, but it breaks the DPQuery abstraction. Now the optimizer uses a GaussianSumQuery instead of GaussianAverageQuery, and normalization by batch size is done inside the optimizer. Also instead of creating all DPQueries with a PrivacyLedger and then wrapping with QueryWithLedger, it is now sufficient to create the queries with no ledger and QueryWithLedger will construct the ledger and pass it to all inner queries. PiperOrigin-RevId: 251462353
224 lines
8.8 KiB
Python
224 lines
8.8 KiB
Python
# Copyright 2019, The TensorFlow Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Training a language model (recurrent neural network) with DP-SGD optimizer.
|
|
|
|
This tutorial uses a corpus of text from TensorFlow datasets unless a
|
|
FLAGS.data_dir is specified with the path to a directory containing two files
|
|
train.txt and test.txt corresponding to a training and test corpus.
|
|
|
|
Even though we haven't done any hyperparameter tuning, and the analytical
|
|
epsilon upper bound can't offer any strong guarantees, the benefits of training
|
|
with differential privacy can be clearly seen by examining the trained model.
|
|
In particular, such inspection can confirm that the set of training-data
|
|
examples that the model fails to learn (i.e., has high perplexity for) comprises
|
|
outliers and rare sentences outside the distribution to be learned (see examples
|
|
and a discussion in this blog post). This can be further confirmed by
|
|
testing the differentially-private model's propensity for memorization, e.g.,
|
|
using the exposure metric of https://arxiv.org/abs/1802.08232.
|
|
|
|
This example is decribed in more details in this post: https://goo.gl/UKr7vH
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
|
|
from absl import app
|
|
from absl import flags
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import tensorflow_datasets as tfds
|
|
|
|
from privacy.analysis import privacy_ledger
|
|
from privacy.analysis.rdp_accountant import compute_rdp
|
|
from privacy.analysis.rdp_accountant import get_privacy_spent
|
|
from privacy.optimizers import dp_optimizer
|
|
|
|
flags.DEFINE_boolean(
|
|
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
|
'train with vanilla SGD.')
|
|
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training')
|
|
flags.DEFINE_float('noise_multiplier', 0.001,
|
|
'Ratio of the standard deviation to the clipping norm')
|
|
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
|
flags.DEFINE_integer('batch_size', 256, 'Batch size')
|
|
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
|
|
flags.DEFINE_integer(
|
|
'microbatches', 256, 'Number of microbatches '
|
|
'(must evenly divide batch_size)')
|
|
flags.DEFINE_string('model_dir', None, 'Model directory')
|
|
flags.DEFINE_string('data_dir', None, 'Directory containing the PTB data.')
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
SEQ_LEN = 80
|
|
NB_TRAIN = 45000
|
|
|
|
|
|
def rnn_model_fn(features, labels, mode): # pylint: disable=unused-argument
|
|
"""Model function for a RNN."""
|
|
|
|
# Define RNN architecture using tf.keras.layers.
|
|
x = features['x']
|
|
x = tf.reshape(x, [-1, SEQ_LEN])
|
|
input_layer = x[:, :-1]
|
|
input_one_hot = tf.one_hot(input_layer, 256)
|
|
lstm = tf.keras.layers.LSTM(256, return_sequences=True).apply(input_one_hot)
|
|
logits = tf.keras.layers.Dense(256).apply(lstm)
|
|
|
|
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
|
vector_loss = tf.nn.softmax_cross_entropy_with_logits(
|
|
labels=tf.cast(tf.one_hot(x[:, 1:], 256), dtype=tf.float32),
|
|
logits=logits)
|
|
# Define mean of loss across minibatch (for reporting through tf.Estimator).
|
|
scalar_loss = tf.reduce_mean(vector_loss)
|
|
|
|
# Configure the training op (for TRAIN mode).
|
|
if mode == tf.estimator.ModeKeys.TRAIN:
|
|
if FLAGS.dpsgd:
|
|
|
|
ledger = privacy_ledger.PrivacyLedger(
|
|
population_size=NB_TRAIN,
|
|
selection_probability=(FLAGS.batch_size / NB_TRAIN))
|
|
|
|
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
|
|
l2_norm_clip=FLAGS.l2_norm_clip,
|
|
noise_multiplier=FLAGS.noise_multiplier,
|
|
num_microbatches=FLAGS.microbatches,
|
|
ledger=ledger,
|
|
learning_rate=FLAGS.learning_rate,
|
|
unroll_microbatches=True)
|
|
opt_loss = vector_loss
|
|
else:
|
|
optimizer = tf.train.AdamOptimizer(
|
|
learning_rate=FLAGS.learning_rate)
|
|
opt_loss = scalar_loss
|
|
global_step = tf.train.get_global_step()
|
|
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
|
|
return tf.estimator.EstimatorSpec(mode=mode,
|
|
loss=scalar_loss,
|
|
train_op=train_op)
|
|
|
|
# Add evaluation metrics (for EVAL mode).
|
|
elif mode == tf.estimator.ModeKeys.EVAL:
|
|
eval_metric_ops = {
|
|
'accuracy':
|
|
tf.metrics.accuracy(
|
|
labels=tf.cast(x[:, 1:], dtype=tf.int32),
|
|
predictions=tf.argmax(input=logits, axis=2))
|
|
}
|
|
return tf.estimator.EstimatorSpec(mode=mode,
|
|
loss=scalar_loss,
|
|
eval_metric_ops=eval_metric_ops)
|
|
|
|
|
|
def load_data():
|
|
"""Load training and validation data."""
|
|
if not FLAGS.data_dir:
|
|
print('FLAGS.data_dir containing train.txt and test.txt was not specified, '
|
|
'using a substitute dataset from the tensorflow_datasets module.')
|
|
train_dataset = tfds.load(name='lm1b/subwords8k',
|
|
split=tfds.Split.TRAIN,
|
|
batch_size=NB_TRAIN)
|
|
test_dataset = tfds.load(name='lm1b/subwords8k',
|
|
split=tfds.Split.TEST,
|
|
batch_size=10000)
|
|
train_data = next(tfds.as_numpy(train_dataset))
|
|
test_data = next(tfds.as_numpy(test_dataset))
|
|
train_data = train_data['text'].flatten()
|
|
test_data = test_data['text'].flatten()
|
|
else:
|
|
train_fpath = os.path.join(FLAGS.data_dir, 'train.txt')
|
|
test_fpath = os.path.join(FLAGS.data_dir, 'test.txt')
|
|
train_txt = open(train_fpath).read().split()
|
|
test_txt = open(test_fpath).read().split()
|
|
keys = sorted(set(train_txt))
|
|
remap = {k: i for i, k in enumerate(keys)}
|
|
train_data = np.array([remap[x] for x in train_txt], dtype=np.uint8)
|
|
test_data = np.array([remap[x] for x in test_txt], dtype=np.uint8)
|
|
|
|
return train_data, test_data
|
|
|
|
|
|
def compute_epsilon(steps):
|
|
"""Computes epsilon value for given hyperparameters."""
|
|
if FLAGS.noise_multiplier == 0.0:
|
|
return float('inf')
|
|
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
|
sampling_probability = FLAGS.batch_size / NB_TRAIN
|
|
rdp = compute_rdp(q=sampling_probability,
|
|
noise_multiplier=FLAGS.noise_multiplier,
|
|
steps=steps,
|
|
orders=orders)
|
|
# Delta is set to 1e-5 because Penn TreeBank has 60000 training points.
|
|
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
|
|
|
|
|
def main(unused_argv):
|
|
tf.logging.set_verbosity(tf.logging.INFO)
|
|
if FLAGS.batch_size % FLAGS.microbatches != 0:
|
|
raise ValueError('Number of microbatches should divide evenly batch_size')
|
|
|
|
# Load training and test data.
|
|
train_data, test_data = load_data()
|
|
|
|
# Instantiate the tf.Estimator.
|
|
conf = tf.estimator.RunConfig(save_summary_steps=1000)
|
|
lm_classifier = tf.estimator.Estimator(model_fn=rnn_model_fn,
|
|
model_dir=FLAGS.model_dir,
|
|
config=conf)
|
|
|
|
# Create tf.Estimator input functions for the training and test data.
|
|
batch_len = FLAGS.batch_size * SEQ_LEN
|
|
train_data_end = len(train_data) - len(train_data) % batch_len
|
|
test_data_end = len(test_data) - len(test_data) % batch_len
|
|
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
|
x={'x': train_data[:train_data_end]},
|
|
batch_size=batch_len,
|
|
num_epochs=FLAGS.epochs,
|
|
shuffle=False)
|
|
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
|
x={'x': test_data[:test_data_end]},
|
|
batch_size=batch_len,
|
|
num_epochs=1,
|
|
shuffle=False)
|
|
|
|
# Training loop.
|
|
steps_per_epoch = len(train_data) // batch_len
|
|
for epoch in range(1, FLAGS.epochs + 1):
|
|
print('epoch', epoch)
|
|
# Train the model for one epoch.
|
|
lm_classifier.train(input_fn=train_input_fn, steps=steps_per_epoch)
|
|
|
|
if epoch % 5 == 0:
|
|
name_input_fn = [('Train', train_input_fn), ('Eval', eval_input_fn)]
|
|
for name, input_fn in name_input_fn:
|
|
# Evaluate the model and print results
|
|
eval_results = lm_classifier.evaluate(input_fn=input_fn)
|
|
result_tuple = (epoch, eval_results['accuracy'], eval_results['loss'])
|
|
print(name, 'accuracy after %d epochs is: %.3f (%.4f)' % result_tuple)
|
|
|
|
# Compute the privacy budget expended so far.
|
|
if FLAGS.dpsgd:
|
|
eps = compute_epsilon(epoch * steps_per_epoch)
|
|
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
|
else:
|
|
print('Trained with vanilla non-private SGD optimizer')
|
|
|
|
if __name__ == '__main__':
|
|
app.run(main)
|