tensorflow_privacy/tutorials/bolton_tutorial.py
Michael Reneer 28db674240 Ensure that TF 1.0 API is referenced at the call site in TensorFlow Privacy.
This change makes it easy to search for usage of TF 1.0 API and updates the TF imports across TFP to be written consistently.

PiperOrigin-RevId: 427043028
2022-02-07 16:06:22 -08:00

192 lines
6.9 KiB
Python

# Copyright 2019, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tutorial for bolt_on module, the model and the optimizer."""
import tensorflow as tf
from tensorflow_privacy.privacy.bolt_on import losses # pylint: disable=wrong-import-position
from tensorflow_privacy.privacy.bolt_on import models # pylint: disable=wrong-import-position
from tensorflow_privacy.privacy.bolt_on.optimizers import BoltOn # pylint: disable=wrong-import-position
# -------
# First, we will create a binary classification dataset with a single output
# dimension. The samples for each label are repeated data points at different
# points in space.
# -------
# Parameters for dataset
n_samples = 10
input_dim = 2
n_outputs = 1
# Create binary classification dataset:
x_stack = [
tf.constant(-1, tf.float32, (n_samples, input_dim)),
tf.constant(1, tf.float32, (n_samples, input_dim))
]
y_stack = [
tf.constant(0, tf.float32, (n_samples, 1)),
tf.constant(1, tf.float32, (n_samples, 1))
]
x, y = tf.concat(x_stack, 0), tf.concat(y_stack, 0)
print(x.shape, y.shape)
generator = tf.data.Dataset.from_tensor_slices((x, y))
generator = generator.batch(10)
generator = generator.shuffle(10)
# -------
# First, we will explore using the pre - built BoltOnModel, which is a thin
# wrapper around a Keras Model using a single - layer neural network.
# It automatically uses the BoltOn Optimizer which encompasses all the logic
# required for the BoltOn Differential Privacy method.
# -------
bolt = models.BoltOnModel(n_outputs) # tell the model how many outputs we have.
# -------
# Now, we will pick our optimizer and Strongly Convex Loss function. The loss
# must extend from StrongConvexMixin and implement the associated methods.Some
# existing loss functions are pre - implemented in bolt_on.loss
# -------
optimizer = tf.optimizers.SGD()
reg_lambda = 1
C = 1
radius_constant = 1
loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
# -------
# For simplicity, we pick all parameters of the StrongConvexBinaryCrossentropy
# to be 1; these are all tunable and their impact can be read in losses.
# StrongConvexBinaryCrossentropy.We then compile the model with the chosen
# optimizer and loss, which will automatically wrap the chosen optimizer with
# the BoltOn Optimizer, ensuring the required components function as required
# for privacy guarantees.
# -------
bolt.compile(optimizer, loss)
# -------
# To fit the model, the optimizer will require additional information about
# the dataset and model.These parameters are:
# 1. the class_weights used
# 2. the number of samples in the dataset
# 3. the batch size which the model will try to infer, if possible. If not,
# you will be required to pass these explicitly to the fit method.
#
# As well, there are two privacy parameters than can be altered:
# 1. epsilon, a float
# 2. noise_distribution, a valid string indicating the distriution to use (must
# be implemented)
#
# The BoltOnModel offers a helper method,.calculate_class_weight to aid in
# class_weight calculation.
# required parameters
# -------
class_weight = None # default, use .calculate_class_weight for other values
batch_size = None # default, if it cannot be inferred, specify this
n_samples = None # default, if it cannot be iferred, specify this
# privacy parameters
epsilon = 2
noise_distribution = 'laplace'
bolt.fit(
x,
y,
epsilon=epsilon,
class_weight=class_weight,
batch_size=batch_size,
n_samples=n_samples,
noise_distribution=noise_distribution,
epochs=2)
# -------
# We may also train a generator object, or try different optimizers and loss
# functions. Below, we will see that we must pass the number of samples as the
# fit method is unable to infer it for a generator.
# -------
optimizer2 = tf.optimizers.Adam()
bolt.compile(optimizer2, loss)
# required parameters
class_weight = None # default, use .calculate_class_weight for other values
batch_size = None # default, if it cannot be inferred, specify this
n_samples = None # default, if it cannot be iferred, specify this
# privacy parameters
epsilon = 2
noise_distribution = 'laplace'
try:
bolt.fit(
generator,
epsilon=epsilon,
class_weight=class_weight,
batch_size=batch_size,
n_samples=n_samples,
noise_distribution=noise_distribution,
verbose=0)
except ValueError as e:
print(e)
# -------
# And now, re running with the parameter set.
# -------
n_samples = 20
bolt.fit_generator(
generator,
epsilon=epsilon,
class_weight=class_weight,
n_samples=n_samples,
noise_distribution=noise_distribution,
verbose=0)
# -------
# You don't have to use the BoltOn model to use the BoltOn method.
# There are only a few requirements:
# 1. make sure any requirements from the loss are implemented in the model.
# 2. instantiate the optimizer and use it as a context around the fit operation.
# -------
# -------------------- Part 2, using the Optimizer
# -------
# Here, we create our own model and setup the BoltOn optimizer.
# -------
class TestModel(tf.keras.Model): # pylint: disable=abstract-method
def __init__(self, reg_layer, number_of_outputs=1):
super().__init__(name='test')
self.output_layer = tf.keras.layers.Dense(
number_of_outputs, kernel_regularizer=reg_layer)
def call(self, inputs): # pylint: disable=arguments-differ
return self.output_layer(inputs)
optimizer = tf.optimizers.SGD()
loss = losses.StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
optimizer = BoltOn(optimizer, loss)
# -------
# Now, we instantiate our model and check for 1. Since our loss requires L2
# regularization over the kernel, we will pass it to the model.
# -------
n_outputs = 1 # parameter for model and optimizer context.
test_model = TestModel(loss.kernel_regularizer(), n_outputs)
test_model.compile(optimizer, loss)
# -------
# We comply with 2., and use the BoltOn Optimizer as a context around the fit
# method.
# -------
# parameters for context
noise_distribution = 'laplace'
epsilon = 2
class_weights = 1 # Previously, the fit method auto-detected the class_weights.
# Here, we need to pass the class_weights explicitly. 1 is the same as None.
n_samples = 20
batch_size = 5
with optimizer(
noise_distribution=noise_distribution,
epsilon=epsilon,
layers=test_model.layers,
class_weights=class_weights,
n_samples=n_samples,
batch_size=batch_size) as _:
test_model.fit(x, y, batch_size=batch_size, epochs=2)