223 lines
6.8 KiB
Python
223 lines
6.8 KiB
Python
|
import argparse
|
||
|
import equations
|
||
|
import numpy as np
|
||
|
import time
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torch import optim
|
||
|
from torch.optim.lr_scheduler import MultiStepLR
|
||
|
from torch.utils.data import DataLoader, Subset
|
||
|
import torch.nn.functional as F
|
||
|
from pathlib import Path
|
||
|
from torchvision import transforms
|
||
|
from torchvision.datasets import CIFAR10
|
||
|
import pytorch_lightning as pl
|
||
|
import opacus
|
||
|
from opacus.validators import ModuleValidator
|
||
|
from opacus.utils.batch_memory_manager import BatchMemoryManager
|
||
|
from WideResNet import WideResNet
|
||
|
import warnings
|
||
|
warnings.filterwarnings("ignore")
|
||
|
|
||
|
|
||
|
DEVICE = torch.device("cpu")
|
||
|
|
||
|
|
||
|
def get_dataloaders(m=1000, train_batch_size=128, test_batch_size=10):
|
||
|
seed = np.random.randint(0, 1e9)
|
||
|
seed ^= int(time.time())
|
||
|
pl.seed_everything(seed)
|
||
|
|
||
|
train_transform = transforms.Compose([
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
|
||
|
(4, 4, 4, 4), mode='reflect').squeeze()),
|
||
|
transforms.ToPILImage(),
|
||
|
transforms.RandomCrop(32),
|
||
|
transforms.RandomHorizontalFlip(),
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
||
|
])
|
||
|
|
||
|
test_transform = transforms.Compose([
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
||
|
])
|
||
|
datadir = Path("./data")
|
||
|
train_ds = CIFAR10(root=datadir, train=True, download=True, transform=train_transform)
|
||
|
test_ds = CIFAR10(root=datadir, train=False, download=True, transform=test_transform)
|
||
|
|
||
|
keep = np.full(len(train_ds), True)
|
||
|
keep[:m] = False
|
||
|
np.random.shuffle(keep)
|
||
|
|
||
|
train_ds_p = Subset(train_ds, keep)
|
||
|
train_dl = DataLoader(train_ds, batch_size=train_batch_size, shuffle=True, num_workers=4)
|
||
|
train_dl_p = DataLoader(train_ds_p, batch_size=train_batch_size, shuffle=True, num_workers=4)
|
||
|
test_dl = DataLoader(test_ds, batch_size=test_batch_size, shuffle=True, num_workers=4)
|
||
|
|
||
|
return train_dl, train_dl_p, test_dl
|
||
|
|
||
|
|
||
|
def train_no_cap(model, hp, train_loader, test_loader, optimizer, criterion, scheduler):
|
||
|
best_test_set_accuracy = 0
|
||
|
|
||
|
for epoch in range(hp['epochs']):
|
||
|
model.train()
|
||
|
for i, data in enumerate(train_loader, 0):
|
||
|
inputs, labels = data
|
||
|
inputs = inputs.to(DEVICE)
|
||
|
labels = labels.to(DEVICE)
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
|
||
|
wrn_outputs = model(inputs)
|
||
|
outputs = wrn_outputs[0]
|
||
|
loss = criterion(outputs, labels)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
scheduler.step()
|
||
|
|
||
|
if epoch % 20 == 0 or epoch == hp['epochs'] - 1:
|
||
|
with torch.no_grad():
|
||
|
correct = 0
|
||
|
total = 0
|
||
|
|
||
|
model.eval()
|
||
|
for data in test_loader:
|
||
|
images, labels = data
|
||
|
images = images.to(DEVICE)
|
||
|
labels = labels.to(DEVICE)
|
||
|
|
||
|
wrn_outputs = model(images)
|
||
|
outputs = wrn_outputs[0]
|
||
|
_, predicted = torch.max(outputs.data, 1)
|
||
|
total += labels.size(0)
|
||
|
correct += (predicted == labels).sum().item()
|
||
|
|
||
|
epoch_accuracy = correct / total
|
||
|
epoch_accuracy = round(100 * epoch_accuracy, 2)
|
||
|
print(f"Epoch {epoch+1}/{hp['epochs']}: {epoch_accuracy}%")
|
||
|
|
||
|
return best_test_set_accuracy
|
||
|
|
||
|
|
||
|
def train(hp):
|
||
|
model = WideResNet(
|
||
|
d=hp["wrn_depth"],
|
||
|
k=hp["wrn_width"],
|
||
|
n_classes=10,
|
||
|
input_features=3,
|
||
|
output_features=16,
|
||
|
strides=[1, 1, 2, 2],
|
||
|
)
|
||
|
model = ModuleValidator.fix(model)
|
||
|
ModuleValidator.validate(model, strict=True)
|
||
|
model = model.to(DEVICE)
|
||
|
|
||
|
criterion = nn.CrossEntropyLoss()
|
||
|
optimizer = optim.SGD(
|
||
|
model.parameters(),
|
||
|
lr=0.1,
|
||
|
momentum=0.9,
|
||
|
nesterov=True,
|
||
|
weight_decay=5e-4
|
||
|
)
|
||
|
scheduler = MultiStepLR(
|
||
|
optimizer,
|
||
|
milestones=[int(i * hp['epochs']) for i in [0.3, 0.6, 0.8]],
|
||
|
gamma=0.2
|
||
|
)
|
||
|
|
||
|
train_dl, train_dl_p, test_dl = get_dataloaders()
|
||
|
|
||
|
print(f"Training with {hp['epochs']} epochs")
|
||
|
|
||
|
if hp['epsilon'] is not None:
|
||
|
privacy_engine = opacus.PrivacyEngine()
|
||
|
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||
|
module=model,
|
||
|
optimizer=optimizer,
|
||
|
data_loader=train_dl,
|
||
|
epochs=hp['epochs'],
|
||
|
target_epsilon=hp['epsilon'],
|
||
|
target_delta=hp['delta'],
|
||
|
max_grad_norm=hp['norm'],
|
||
|
)
|
||
|
|
||
|
print(f"DP epsilon = {hp['epsilon']}, delta = {hp['delta']}")
|
||
|
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {hp['norm']}")
|
||
|
|
||
|
with BatchMemoryManager(
|
||
|
data_loader=train_loader,
|
||
|
max_physical_batch_size=1000, # Roughly 12gb vram, uses 9.4
|
||
|
optimizer=optimizer
|
||
|
) as memory_safe_data_loader:
|
||
|
best_test_set_accuracy = train_no_cap(
|
||
|
model,
|
||
|
hp,
|
||
|
train_dl,
|
||
|
test_dl,
|
||
|
optimizer,
|
||
|
criterion,
|
||
|
scheduler,
|
||
|
)
|
||
|
else:
|
||
|
print("Training without differential privacy")
|
||
|
best_test_set_accuracy = train_no_cap(
|
||
|
model,
|
||
|
hp,
|
||
|
train_dl,
|
||
|
test_dl,
|
||
|
optimizer,
|
||
|
criterion,
|
||
|
scheduler,
|
||
|
)
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
def main():
|
||
|
global DEVICE
|
||
|
|
||
|
parser = argparse.ArgumentParser(description='WideResNet O1 audit')
|
||
|
parser.add_argument('--norm', type=float, help='dpsgd norm clip factor', required=True)
|
||
|
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
|
||
|
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
if torch.cuda.is_available() and args.cuda:
|
||
|
DEVICE = torch.device(f'cuda:{args.cuda}')
|
||
|
elif torch.cuda.is_available():
|
||
|
DEVICE = torch.device('cuda:0')
|
||
|
else:
|
||
|
DEVICE = torch.device('cpu')
|
||
|
|
||
|
hyperparams = {
|
||
|
"wrn_depth": 16,
|
||
|
"wrn_width": 1,
|
||
|
"epsilon": args.epsilon,
|
||
|
"delta": 1e-5,
|
||
|
"norm": args.norm,
|
||
|
"batch_size": 4096,
|
||
|
"epochs": 200,
|
||
|
}
|
||
|
|
||
|
hyperparams['logfile'] = Path('WideResNet_{}_{}_{}_{}s_x{}_{}e_{}d_{}C.txt'.format(
|
||
|
int(time.time()),
|
||
|
hyperparams['wrn_depth'],
|
||
|
hyperparams['wrn_width'],
|
||
|
hyperparams['batch_size'],
|
||
|
hyperparams['epochs'],
|
||
|
hyperparams['epsilon'],
|
||
|
hyperparams['delta'],
|
||
|
hyperparams['norm'],
|
||
|
))
|
||
|
|
||
|
model = train(hyperparams)
|
||
|
torch.save(model.state_dict(), hyperparams['logfile'].with_suffix('.pt'))
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|