Wres: cuda and norm flags
This commit is contained in:
parent
e4b5998dbb
commit
424cb01a15
2 changed files with 71 additions and 58 deletions
|
@ -5,7 +5,6 @@ import math
|
||||||
|
|
||||||
|
|
||||||
class IndividualBlock1(nn.Module):
|
class IndividualBlock1(nn.Module):
|
||||||
|
|
||||||
def __init__(self, input_features, output_features, stride, subsample_input=True, increase_filters=True):
|
def __init__(self, input_features, output_features, stride, subsample_input=True, increase_filters=True):
|
||||||
super(IndividualBlock1, self).__init__()
|
super(IndividualBlock1, self).__init__()
|
||||||
|
|
||||||
|
|
|
@ -10,6 +10,7 @@ from WideResNet import WideResNet
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import opacus
|
import opacus
|
||||||
from opacus.validators import ModuleValidator
|
from opacus.validators import ModuleValidator
|
||||||
|
from opacus.utils.batch_memory_manager import BatchMemoryManager
|
||||||
|
|
||||||
|
|
||||||
def set_seed(seed=42):
|
def set_seed(seed=42):
|
||||||
|
@ -20,15 +21,15 @@ def set_seed(seed=42):
|
||||||
torch.cuda.manual_seed(seed)
|
torch.cuda.manual_seed(seed)
|
||||||
|
|
||||||
|
|
||||||
def _train_seed(net, loaders, device, dataset, log=False, checkpoint=False, logfile='', checkpointFile='', epochs=200):
|
def _train_seed(net, loaders, device, dataset, log=False, checkpoint=False, logfile='', checkpointFile='', epochs=200, norm=1.0):
|
||||||
train_loader, test_loader = loaders
|
train_loader, test_loader = loaders
|
||||||
|
|
||||||
dp_epsilon = 8
|
dp_epsilon = 8
|
||||||
|
dp_delta = 1e-5
|
||||||
if dp_epsilon is not None:
|
if dp_epsilon is not None:
|
||||||
print(f"DP epsilon: {dp_epsilon}")
|
print(f"DP epsilon = {dp_epsilon}, delta = {dp_delta}")
|
||||||
#net = ModuleValidator.fix(net, replace_bn_with_in=True)
|
#net = ModuleValidator.fix(net, replace_bn_with_in=True)
|
||||||
net = ModuleValidator.fix(net)
|
net = ModuleValidator.fix(net)
|
||||||
print(net)
|
|
||||||
ModuleValidator.validate(net, strict=True)
|
ModuleValidator.validate(net, strict=True)
|
||||||
|
|
||||||
criterion = nn.CrossEntropyLoss()
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
@ -37,68 +38,77 @@ def _train_seed(net, loaders, device, dataset, log=False, checkpoint=False, logf
|
||||||
|
|
||||||
best_test_set_accuracy = 0
|
best_test_set_accuracy = 0
|
||||||
|
|
||||||
privacy_engine = opacus.PrivacyEngine()
|
if dp_epsilon is not None:
|
||||||
net, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
privacy_engine = opacus.PrivacyEngine()
|
||||||
module=net,
|
net, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||||||
optimizer=optimizer,
|
module=net,
|
||||||
data_loader=train_loader,
|
optimizer=optimizer,
|
||||||
epochs=epochs,
|
data_loader=train_loader,
|
||||||
target_epsilon=8,
|
epochs=epochs,
|
||||||
target_delta=1e-5,
|
target_epsilon=dp_epsilon,
|
||||||
max_grad_norm=3.0,
|
target_delta=dp_delta,
|
||||||
)
|
max_grad_norm=norm,
|
||||||
|
)
|
||||||
|
|
||||||
print(f"Using sigma={optimizer.noise_multiplier} and C={1.0}")
|
print(f"Using sigma={optimizer.noise_multiplier} and C={1.0}, norm = {norm}")
|
||||||
|
else:
|
||||||
|
print("Training without differential privacy")
|
||||||
|
|
||||||
print(f"Training with {epochs} epochs")
|
print(f"Training with {epochs} epochs")
|
||||||
#for epoch in tqdm(range(epochs)):
|
#for epoch in tqdm(range(epochs)):
|
||||||
for epoch in range(epochs):
|
with BatchMemoryManager(
|
||||||
net.train()
|
data_loader=train_loader,
|
||||||
#for i, data in tqdm(enumerate(train_loader, 0), leave=False):
|
max_physical_batch_size=1000, # Roughly 12gb vram, uses 9.4
|
||||||
for i, data in enumerate(train_loader, 0):
|
optimizer=optimizer
|
||||||
inputs, labels = data
|
) as memory_safe_data_loader:
|
||||||
inputs = inputs.to(device)
|
for epoch in range(epochs):
|
||||||
labels = labels.to(device)
|
net.train()
|
||||||
|
#for i, data in tqdm(enumerate(train_loader, 0), leave=False):
|
||||||
optimizer.zero_grad()
|
for i, data in enumerate(memory_safe_data_loader, 0):
|
||||||
|
inputs, labels = data
|
||||||
wrn_outputs = net(inputs)
|
inputs = inputs.to(device)
|
||||||
outputs = wrn_outputs[0]
|
|
||||||
loss = criterion(outputs, labels)
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
scheduler.step()
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
|
|
||||||
correct = 0
|
|
||||||
total = 0
|
|
||||||
|
|
||||||
net.eval()
|
|
||||||
for data in test_loader:
|
|
||||||
images, labels = data
|
|
||||||
images = images.to(device)
|
|
||||||
labels = labels.to(device)
|
labels = labels.to(device)
|
||||||
|
|
||||||
wrn_outputs = net(images)
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
wrn_outputs = net(inputs)
|
||||||
outputs = wrn_outputs[0]
|
outputs = wrn_outputs[0]
|
||||||
_, predicted = torch.max(outputs.data, 1)
|
loss = criterion(outputs, labels)
|
||||||
total += labels.size(0)
|
loss.backward()
|
||||||
correct += (predicted == labels).sum().item()
|
optimizer.step()
|
||||||
|
|
||||||
epoch_accuracy = correct / total
|
scheduler.step()
|
||||||
epoch_accuracy = round(100 * epoch_accuracy, 2)
|
|
||||||
|
|
||||||
if log:
|
if epoch % 10 == 0 or epoch == epochs - 1:
|
||||||
print('Accuracy at epoch {} is {}%\n'.format(epoch + 1, epoch_accuracy))
|
with torch.no_grad():
|
||||||
with open(logfile, 'a') as temp:
|
|
||||||
temp.write('Accuracy at epoch {} is {}%\n'.format(epoch + 1, epoch_accuracy))
|
|
||||||
|
|
||||||
if epoch_accuracy > best_test_set_accuracy:
|
correct = 0
|
||||||
best_test_set_accuracy = epoch_accuracy
|
total = 0
|
||||||
if checkpoint:
|
|
||||||
torch.save(net.state_dict(), checkpointFile)
|
net.eval()
|
||||||
|
for data in test_loader:
|
||||||
|
images, labels = data
|
||||||
|
images = images.to(device)
|
||||||
|
labels = labels.to(device)
|
||||||
|
|
||||||
|
wrn_outputs = net(images)
|
||||||
|
outputs = wrn_outputs[0]
|
||||||
|
_, predicted = torch.max(outputs.data, 1)
|
||||||
|
total += labels.size(0)
|
||||||
|
correct += (predicted == labels).sum().item()
|
||||||
|
|
||||||
|
epoch_accuracy = correct / total
|
||||||
|
epoch_accuracy = round(100 * epoch_accuracy, 2)
|
||||||
|
|
||||||
|
if log:
|
||||||
|
print('Accuracy at epoch {} is {}%'.format(epoch + 1, epoch_accuracy))
|
||||||
|
with open(logfile, 'a') as temp:
|
||||||
|
temp.write('Accuracy at epoch {} is {}%\n'.format(epoch + 1, epoch_accuracy))
|
||||||
|
|
||||||
|
if epoch_accuracy > best_test_set_accuracy:
|
||||||
|
best_test_set_accuracy = epoch_accuracy
|
||||||
|
if checkpoint:
|
||||||
|
torch.save(net.state_dict(), checkpointFile)
|
||||||
|
|
||||||
return best_test_set_accuracy
|
return best_test_set_accuracy
|
||||||
|
|
||||||
|
@ -124,7 +134,9 @@ def train(args):
|
||||||
checkpoint = True if training_configurations.checkpoint.lower() == 'true' else False
|
checkpoint = True if training_configurations.checkpoint.lower() == 'true' else False
|
||||||
loaders = get_loaders(dataset, training_configurations.batch_size)
|
loaders = get_loaders(dataset, training_configurations.batch_size)
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available() and args.cuda:
|
||||||
|
device = torch.device(f'cuda:{args.cuda}')
|
||||||
|
elif torch.cuda.is_available():
|
||||||
device = torch.device('cuda:0')
|
device = torch.device('cuda:0')
|
||||||
else:
|
else:
|
||||||
device = torch.device('cpu')
|
device = torch.device('cpu')
|
||||||
|
@ -144,7 +156,7 @@ def train(args):
|
||||||
|
|
||||||
checkpointFile = 'wrn-{}-{}-seed-{}-{}-dict.pth'.format(wrn_depth, wrn_width, dataset, seed) if checkpoint else ''
|
checkpointFile = 'wrn-{}-{}-seed-{}-{}-dict.pth'.format(wrn_depth, wrn_width, dataset, seed) if checkpoint else ''
|
||||||
epochs = training_configurations.epochs
|
epochs = training_configurations.epochs
|
||||||
best_test_set_accuracy = _train_seed(net, loaders, device, dataset, log, checkpoint, logfile, checkpointFile, epochs)
|
best_test_set_accuracy = _train_seed(net, loaders, device, dataset, log, checkpoint, logfile, checkpointFile, epochs, args.norm)
|
||||||
|
|
||||||
if log:
|
if log:
|
||||||
with open(logfile, 'a') as temp:
|
with open(logfile, 'a') as temp:
|
||||||
|
@ -168,6 +180,8 @@ if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser(description='WideResNet')
|
parser = argparse.ArgumentParser(description='WideResNet')
|
||||||
|
|
||||||
parser.add_argument('-config', '--config', help='Training Configurations', required=True)
|
parser.add_argument('-config', '--config', help='Training Configurations', required=True)
|
||||||
|
parser.add_argument('--norm', type=float, help='dpsgd norm clip factor', required=True)
|
||||||
|
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue