Wres: cuda and norm flags
This commit is contained in:
parent
e4b5998dbb
commit
424cb01a15
2 changed files with 71 additions and 58 deletions
|
@ -5,7 +5,6 @@ import math
|
|||
|
||||
|
||||
class IndividualBlock1(nn.Module):
|
||||
|
||||
def __init__(self, input_features, output_features, stride, subsample_input=True, increase_filters=True):
|
||||
super(IndividualBlock1, self).__init__()
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ from WideResNet import WideResNet
|
|||
from tqdm import tqdm
|
||||
import opacus
|
||||
from opacus.validators import ModuleValidator
|
||||
from opacus.utils.batch_memory_manager import BatchMemoryManager
|
||||
|
||||
|
||||
def set_seed(seed=42):
|
||||
|
@ -20,15 +21,15 @@ def set_seed(seed=42):
|
|||
torch.cuda.manual_seed(seed)
|
||||
|
||||
|
||||
def _train_seed(net, loaders, device, dataset, log=False, checkpoint=False, logfile='', checkpointFile='', epochs=200):
|
||||
def _train_seed(net, loaders, device, dataset, log=False, checkpoint=False, logfile='', checkpointFile='', epochs=200, norm=1.0):
|
||||
train_loader, test_loader = loaders
|
||||
|
||||
dp_epsilon = 8
|
||||
dp_delta = 1e-5
|
||||
if dp_epsilon is not None:
|
||||
print(f"DP epsilon: {dp_epsilon}")
|
||||
print(f"DP epsilon = {dp_epsilon}, delta = {dp_delta}")
|
||||
#net = ModuleValidator.fix(net, replace_bn_with_in=True)
|
||||
net = ModuleValidator.fix(net)
|
||||
print(net)
|
||||
ModuleValidator.validate(net, strict=True)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
|
@ -37,68 +38,77 @@ def _train_seed(net, loaders, device, dataset, log=False, checkpoint=False, logf
|
|||
|
||||
best_test_set_accuracy = 0
|
||||
|
||||
privacy_engine = opacus.PrivacyEngine()
|
||||
net, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||||
module=net,
|
||||
optimizer=optimizer,
|
||||
data_loader=train_loader,
|
||||
epochs=epochs,
|
||||
target_epsilon=8,
|
||||
target_delta=1e-5,
|
||||
max_grad_norm=3.0,
|
||||
)
|
||||
if dp_epsilon is not None:
|
||||
privacy_engine = opacus.PrivacyEngine()
|
||||
net, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||||
module=net,
|
||||
optimizer=optimizer,
|
||||
data_loader=train_loader,
|
||||
epochs=epochs,
|
||||
target_epsilon=dp_epsilon,
|
||||
target_delta=dp_delta,
|
||||
max_grad_norm=norm,
|
||||
)
|
||||
|
||||
print(f"Using sigma={optimizer.noise_multiplier} and C={1.0}")
|
||||
print(f"Using sigma={optimizer.noise_multiplier} and C={1.0}, norm = {norm}")
|
||||
else:
|
||||
print("Training without differential privacy")
|
||||
|
||||
print(f"Training with {epochs} epochs")
|
||||
#for epoch in tqdm(range(epochs)):
|
||||
for epoch in range(epochs):
|
||||
net.train()
|
||||
#for i, data in tqdm(enumerate(train_loader, 0), leave=False):
|
||||
for i, data in enumerate(train_loader, 0):
|
||||
inputs, labels = data
|
||||
inputs = inputs.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
wrn_outputs = net(inputs)
|
||||
outputs = wrn_outputs[0]
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
scheduler.step()
|
||||
|
||||
with torch.no_grad():
|
||||
|
||||
correct = 0
|
||||
total = 0
|
||||
|
||||
net.eval()
|
||||
for data in test_loader:
|
||||
images, labels = data
|
||||
images = images.to(device)
|
||||
with BatchMemoryManager(
|
||||
data_loader=train_loader,
|
||||
max_physical_batch_size=1000, # Roughly 12gb vram, uses 9.4
|
||||
optimizer=optimizer
|
||||
) as memory_safe_data_loader:
|
||||
for epoch in range(epochs):
|
||||
net.train()
|
||||
#for i, data in tqdm(enumerate(train_loader, 0), leave=False):
|
||||
for i, data in enumerate(memory_safe_data_loader, 0):
|
||||
inputs, labels = data
|
||||
inputs = inputs.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
wrn_outputs = net(images)
|
||||
optimizer.zero_grad()
|
||||
|
||||
wrn_outputs = net(inputs)
|
||||
outputs = wrn_outputs[0]
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
epoch_accuracy = correct / total
|
||||
epoch_accuracy = round(100 * epoch_accuracy, 2)
|
||||
scheduler.step()
|
||||
|
||||
if log:
|
||||
print('Accuracy at epoch {} is {}%\n'.format(epoch + 1, epoch_accuracy))
|
||||
with open(logfile, 'a') as temp:
|
||||
temp.write('Accuracy at epoch {} is {}%\n'.format(epoch + 1, epoch_accuracy))
|
||||
if epoch % 10 == 0 or epoch == epochs - 1:
|
||||
with torch.no_grad():
|
||||
|
||||
if epoch_accuracy > best_test_set_accuracy:
|
||||
best_test_set_accuracy = epoch_accuracy
|
||||
if checkpoint:
|
||||
torch.save(net.state_dict(), checkpointFile)
|
||||
correct = 0
|
||||
total = 0
|
||||
|
||||
net.eval()
|
||||
for data in test_loader:
|
||||
images, labels = data
|
||||
images = images.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
wrn_outputs = net(images)
|
||||
outputs = wrn_outputs[0]
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
|
||||
epoch_accuracy = correct / total
|
||||
epoch_accuracy = round(100 * epoch_accuracy, 2)
|
||||
|
||||
if log:
|
||||
print('Accuracy at epoch {} is {}%'.format(epoch + 1, epoch_accuracy))
|
||||
with open(logfile, 'a') as temp:
|
||||
temp.write('Accuracy at epoch {} is {}%\n'.format(epoch + 1, epoch_accuracy))
|
||||
|
||||
if epoch_accuracy > best_test_set_accuracy:
|
||||
best_test_set_accuracy = epoch_accuracy
|
||||
if checkpoint:
|
||||
torch.save(net.state_dict(), checkpointFile)
|
||||
|
||||
return best_test_set_accuracy
|
||||
|
||||
|
@ -124,7 +134,9 @@ def train(args):
|
|||
checkpoint = True if training_configurations.checkpoint.lower() == 'true' else False
|
||||
loaders = get_loaders(dataset, training_configurations.batch_size)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
if torch.cuda.is_available() and args.cuda:
|
||||
device = torch.device(f'cuda:{args.cuda}')
|
||||
elif torch.cuda.is_available():
|
||||
device = torch.device('cuda:0')
|
||||
else:
|
||||
device = torch.device('cpu')
|
||||
|
@ -144,7 +156,7 @@ def train(args):
|
|||
|
||||
checkpointFile = 'wrn-{}-{}-seed-{}-{}-dict.pth'.format(wrn_depth, wrn_width, dataset, seed) if checkpoint else ''
|
||||
epochs = training_configurations.epochs
|
||||
best_test_set_accuracy = _train_seed(net, loaders, device, dataset, log, checkpoint, logfile, checkpointFile, epochs)
|
||||
best_test_set_accuracy = _train_seed(net, loaders, device, dataset, log, checkpoint, logfile, checkpointFile, epochs, args.norm)
|
||||
|
||||
if log:
|
||||
with open(logfile, 'a') as temp:
|
||||
|
@ -168,6 +180,8 @@ if __name__ == '__main__':
|
|||
parser = argparse.ArgumentParser(description='WideResNet')
|
||||
|
||||
parser.add_argument('-config', '--config', help='Training Configurations', required=True)
|
||||
parser.add_argument('--norm', type=float, help='dpsgd norm clip factor', required=True)
|
||||
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
|
Loading…
Reference in a new issue