Lira: train run shadow models
This commit is contained in:
parent
91c61df0a8
commit
bffecb459c
1 changed files with 122 additions and 9 deletions
|
@ -50,18 +50,124 @@ def eval_model(smodel, device, dtype, data, labels, batch_size):
|
||||||
return eval_acc
|
return eval_acc
|
||||||
|
|
||||||
|
|
||||||
def run_shadow_model():
|
def run_shadow_model(shadow_path, device, dtype, data, labels, batch_size):
|
||||||
batch_size = 512
|
smodel = load_model(shadow_path, device, dtype, data)
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
eval_acc = eval_model(smodel, device, dtype, data, labels, batch_size)
|
||||||
dtype = torch.float16 if device.type != "cpu" else torch.float32
|
|
||||||
train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
|
|
||||||
|
|
||||||
smodel = load_model("shadow.pt", device, dtype, train_data)
|
|
||||||
eval_acc = eval_model(smodel, device, dtype, train_data, train_targets, batch_size)
|
|
||||||
|
|
||||||
print(f"Evaluation Accuracy: {eval_acc:.4f}")
|
print(f"Evaluation Accuracy: {eval_acc:.4f}")
|
||||||
|
|
||||||
|
|
||||||
|
def train_shadow(shadow_path, train_data, train_targets, valid_data, valid_targets, batch_size):
|
||||||
|
# Configurable parameters
|
||||||
|
epochs = 10
|
||||||
|
momentum = 0.9
|
||||||
|
weight_decay = 0.256
|
||||||
|
weight_decay_bias = 0.004
|
||||||
|
ema_update_freq = 5
|
||||||
|
ema_rho = 0.99**ema_update_freq
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
dtype = torch.float16 if device.type != "cpu" else torch.float32
|
||||||
|
|
||||||
|
# First, the learning rate rises from 0 to 0.002 for the first 194 batches.
|
||||||
|
# Next, the learning rate shrinks down to 0.0002 over the next 582 batches.
|
||||||
|
lr_schedule = torch.cat(
|
||||||
|
[
|
||||||
|
torch.linspace(0e0, 2e-3, 194),
|
||||||
|
torch.linspace(2e-3, 2e-4, 582),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
lr_schedule_bias = 64.0 * lr_schedule
|
||||||
|
|
||||||
|
torch.backends.cudnn.benchmark = True
|
||||||
|
|
||||||
|
# train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
|
||||||
|
|
||||||
|
weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4])
|
||||||
|
train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
|
||||||
|
train_model.to(dtype)
|
||||||
|
|
||||||
|
for module in train_model.modules():
|
||||||
|
if isinstance(module, nn.BatchNorm2d):
|
||||||
|
module.float()
|
||||||
|
|
||||||
|
train_model.to(device)
|
||||||
|
|
||||||
|
# Collect weights and biases and create nesterov velocity values
|
||||||
|
weights = [
|
||||||
|
(w, torch.zeros_like(w))
|
||||||
|
for w in train_model.parameters()
|
||||||
|
if w.requires_grad and len(w.shape) > 1
|
||||||
|
]
|
||||||
|
biases = [
|
||||||
|
(w, torch.zeros_like(w))
|
||||||
|
for w in train_model.parameters()
|
||||||
|
if w.requires_grad and len(w.shape) <= 1
|
||||||
|
]
|
||||||
|
|
||||||
|
# Train and validate
|
||||||
|
batch_count = 0
|
||||||
|
|
||||||
|
# Randomly sample half the data per model
|
||||||
|
nb_rows = train_data.shape[0]
|
||||||
|
indices = torch.randperm(nb_rows)[: nb_rows // 2]
|
||||||
|
indices_in = indices[: nb_rows // 2]
|
||||||
|
train_data = train_data[indices_in]
|
||||||
|
train_targets = train_targets[indices_in]
|
||||||
|
|
||||||
|
for epoch in range(1, epochs + 1):
|
||||||
|
# Flush CUDA pipeline for more accurate time measurement
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
|
||||||
|
start_time = time.perf_counter()
|
||||||
|
|
||||||
|
# Randomly shuffle training data
|
||||||
|
indices = torch.randperm(len(train_data), device=device)
|
||||||
|
data = train_data[indices]
|
||||||
|
targets = train_targets[indices]
|
||||||
|
|
||||||
|
# Crop random 32x32 patches from 40x40 training data
|
||||||
|
data = [
|
||||||
|
random_crop(data[i : i + batch_size], crop_size=(32, 32))
|
||||||
|
for i in range(0, len(data), batch_size)
|
||||||
|
]
|
||||||
|
data = torch.cat(data)
|
||||||
|
|
||||||
|
# Randomly flip half the training data
|
||||||
|
data[: len(data) // 2] = torch.flip(data[: len(data) // 2], [-1])
|
||||||
|
|
||||||
|
for i in range(0, len(data), batch_size):
|
||||||
|
# discard partial batches
|
||||||
|
if i + batch_size > len(data):
|
||||||
|
break
|
||||||
|
|
||||||
|
# Slice batch from data
|
||||||
|
inputs = data[i : i + batch_size]
|
||||||
|
target = targets[i : i + batch_size]
|
||||||
|
batch_count += 1
|
||||||
|
|
||||||
|
# Compute new gradients
|
||||||
|
train_model.zero_grad()
|
||||||
|
train_model.train(True)
|
||||||
|
|
||||||
|
logits = train_model(inputs)
|
||||||
|
|
||||||
|
loss = model.label_smoothing_loss(logits, target, alpha=0.2)
|
||||||
|
|
||||||
|
loss.sum().backward()
|
||||||
|
|
||||||
|
lr_index = min(batch_count, len(lr_schedule) - 1)
|
||||||
|
lr = lr_schedule[lr_index]
|
||||||
|
lr_bias = lr_schedule_bias[lr_index]
|
||||||
|
|
||||||
|
# Update weights and biases of training model
|
||||||
|
update_nesterov(weights, lr, weight_decay, momentum)
|
||||||
|
update_nesterov(biases, lr_bias, weight_decay_bias, momentum)
|
||||||
|
|
||||||
|
torch.save(train_model.state_dict(), shadow_path)
|
||||||
|
|
||||||
|
|
||||||
def train(seed=0):
|
def train(seed=0):
|
||||||
# Configurable parameters
|
# Configurable parameters
|
||||||
epochs = 10
|
epochs = 10
|
||||||
|
@ -338,8 +444,15 @@ def main():
|
||||||
print(f"Max accuracy: {max(accuracies)}")
|
print(f"Max accuracy: {max(accuracies)}")
|
||||||
print(f"Mean accuracy: {mean} +- {std}")
|
print(f"Mean accuracy: {mean} +- {std}")
|
||||||
print()
|
print()
|
||||||
|
batch_size = 512
|
||||||
|
shadow_path = "shadow.pt"
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
dtype = torch.float16 if device.type != "cpu" else torch.float32
|
||||||
|
train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
|
||||||
|
|
||||||
run_shadow_model()
|
train_shadow(shadow_path, train_data, train_targets, valid_data, valid_targets, batch_size)
|
||||||
|
run_shadow_model(shadow_path, device, dtype, train_data, train_targets, batch_size)
|
||||||
|
run_shadow_model(shadow_path, device, dtype, valid_data, valid_targets, batch_size)
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|
Loading…
Reference in a new issue