import time import copy import torch import torch.nn as nn import torchvision import model def train(seed=0): # Configurable parameters epochs = 10 batch_size = 512 momentum = 0.9 weight_decay = 0.256 weight_decay_bias = 0.004 ema_update_freq = 5 ema_rho = 0.99 ** ema_update_freq device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dtype = torch.float16 if device.type != "cpu" else torch.float32 # First, the learning rate rises from 0 to 0.002 for the first 194 batches. # Next, the learning rate shrinks down to 0.0002 over the next 582 batches. lr_schedule = torch.cat([ torch.linspace(0e+0, 2e-3, 194), torch.linspace(2e-3, 2e-4, 582), ]) lr_schedule_bias = 64.0 * lr_schedule # Print information about hardware on first run if seed == 0: if device.type == "cuda": print("Device :", torch.cuda.get_device_name(device.index)) print("Dtype :", dtype) print() # Start measuring time start_time = time.perf_counter() # Set random seed to increase chance of reproducability torch.manual_seed(seed) # Setting cudnn.benchmark to True hampers reproducability, but is faster torch.backends.cudnn.benchmark = True # Load dataset train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype) # Compute special weights for first layer weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4]) # Construct the neural network train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125) # Convert model weights to half precision train_model.to(dtype) # Convert BatchNorm back to single precision for better accuracy for module in train_model.modules(): if isinstance(module, nn.BatchNorm2d): module.float() # Upload model to GPU train_model.to(device) # Collect weights and biases and create nesterov velocity values weights = [ (w, torch.zeros_like(w)) for w in train_model.parameters() if w.requires_grad and len(w.shape) > 1 ] biases = [ (w, torch.zeros_like(w)) for w in train_model.parameters() if w.requires_grad and len(w.shape) <= 1 ] # Copy the model for validation valid_model = copy.deepcopy(train_model) print(f"Preprocessing: {time.perf_counter() - start_time:.2f} seconds") # Train and validate print("\nepoch batch train time [sec] validation accuracy") train_time = 0.0 batch_count = 0 for epoch in range(1, epochs + 1): # Flush CUDA pipeline for more accurate time measurement if torch.cuda.is_available(): torch.cuda.synchronize() start_time = time.perf_counter() # Randomly shuffle training data indices = torch.randperm(len(train_data), device=device) data = train_data[indices] targets = train_targets[indices] # Crop random 32x32 patches from 40x40 training data data = [ random_crop(data[i : i + batch_size], crop_size=(32, 32)) for i in range(0, len(data), batch_size) ] data = torch.cat(data) # Randomly flip half the training data data[: len(data) // 2] = torch.flip(data[: len(data) // 2], [-1]) for i in range(0, len(data), batch_size): # discard partial batches if i + batch_size > len(data): break # Slice batch from data inputs = data[i : i + batch_size] target = targets[i : i + batch_size] batch_count += 1 # Compute new gradients train_model.zero_grad() train_model.train(True) logits = train_model(inputs) loss = model.label_smoothing_loss(logits, target, alpha=0.2) loss.sum().backward() lr_index = min(batch_count, len(lr_schedule) - 1) lr = lr_schedule[lr_index] lr_bias = lr_schedule_bias[lr_index] # Update weights and biases of training model update_nesterov(weights, lr, weight_decay, momentum) update_nesterov(biases, lr_bias, weight_decay_bias, momentum) # Update validation model with exponential moving averages if (i // batch_size % ema_update_freq) == 0: update_ema(train_model, valid_model, ema_rho) if torch.cuda.is_available(): torch.cuda.synchronize() # Add training time train_time += time.perf_counter() - start_time valid_correct = [] for i in range(0, len(valid_data), batch_size): valid_model.train(False) # Test time agumentation: Test model on regular and flipped data regular_inputs = valid_data[i : i + batch_size] flipped_inputs = torch.flip(regular_inputs, [-1]) logits1 = valid_model(regular_inputs).detach() logits2 = valid_model(flipped_inputs).detach() # Final logits are average of augmented logits logits = torch.mean(torch.stack([logits1, logits2], dim=0), dim=0) # Compute correct predictions correct = logits.max(dim=1)[1] == valid_targets[i : i + batch_size] valid_correct.append(correct.detach().type(torch.float64)) # Accuracy is average number of correct predictions valid_acc = torch.mean(torch.cat(valid_correct)).item() print(f"{epoch:5} {batch_count:8d} {train_time:19.2f} {valid_acc:22.4f}") return valid_acc def preprocess_data(data, device, dtype): # Convert to torch float16 tensor data = torch.tensor(data, device=device).to(dtype) # Normalize mean = torch.tensor([125.31, 122.95, 113.87], device=device).to(dtype) std = torch.tensor([62.99, 62.09, 66.70], device=device).to(dtype) data = (data - mean) / std # Permute data from NHWC to NCHW format data = data.permute(0, 3, 1, 2) return data def load_cifar10(device, dtype, data_dir="~/data"): train = torchvision.datasets.CIFAR10(root=data_dir, download=True) valid = torchvision.datasets.CIFAR10(root=data_dir, train=False) train_data = preprocess_data(train.data, device, dtype) valid_data = preprocess_data(valid.data, device, dtype) train_targets = torch.tensor(train.targets).to(device) valid_targets = torch.tensor(valid.targets).to(device) # Pad 32x32 to 40x40 train_data = nn.ReflectionPad2d(4)(train_data) return train_data, train_targets, valid_data, valid_targets def update_ema(train_model, valid_model, rho): # The trained model is not used for validation directly. Instead, the # validation model weights are updated with exponential moving averages. train_weights = train_model.state_dict().values() valid_weights = valid_model.state_dict().values() for train_weight, valid_weight in zip(train_weights, valid_weights): if valid_weight.dtype in [torch.float16, torch.float32]: valid_weight *= rho valid_weight += (1 - rho) * train_weight def update_nesterov(weights, lr, weight_decay, momentum): for weight, velocity in weights: if weight.requires_grad: gradient = weight.grad.data weight = weight.data gradient.add_(weight, alpha=weight_decay).mul_(-lr) velocity.mul_(momentum).add_(gradient) weight.add_(gradient.add_(velocity, alpha=momentum)) def random_crop(data, crop_size): crop_h, crop_w = crop_size h = data.size(2) w = data.size(3) x = torch.randint(w - crop_w, size=(1,))[0] y = torch.randint(h - crop_h, size=(1,))[0] return data[:, :, y : y + crop_h, x : x + crop_w] def sha256(path): import hashlib with open(path, "rb") as f: return hashlib.sha256(f.read()).hexdigest() def getrelpath(abspath): import os return os.path.relpath(abspath, os.getcwd()) def print_info(): # Knowing this information might improve chance of reproducability print("File :", getrelpath(__file__), sha256(__file__)) print("Model :", getrelpath(model.__file__), sha256(model.__file__)) print("PyTorch:", torch.__version__) def main(): print_info() accuracies = [] threshold = 0.94 for run in range(100): valid_acc = train(seed=run) accuracies.append(valid_acc) # Print accumulated results within_threshold = sum(acc >= threshold for acc in accuracies) acc = threshold * 100.0 print() print(f"{within_threshold} of {run + 1} runs >= {acc} % accuracy") mean = sum(accuracies) / len(accuracies) variance = sum((acc - mean)**2 for acc in accuracies) / len(accuracies) std = variance**0.5 print(f"Min accuracy: {min(accuracies)}") print(f"Max accuracy: {max(accuracies)}") print(f"Mean accuracy: {mean} +- {std}") print() if __name__ == "__main__": main()