# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Modified copy by Chenxiang Zhang (orientino) of the original: # https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021 import argparse import multiprocessing as mp import os from pathlib import Path import numpy as np from torchvision.datasets import CIFAR10 parser = argparse.ArgumentParser() parser.add_argument("--savedir", default="exp/cifar10", type=str) args = parser.parse_args() def load_one(path): """ This loads a logits and converts it to a scored prediction. """ opredictions = np.load(os.path.join(path, "logits.npy")) # [n_examples, n_augs, n_classes] # Be exceptionally careful. # Numerically stable everything, as described in the paper. predictions = opredictions - np.max(opredictions, axis=-1, keepdims=True) predictions = np.array(np.exp(predictions), dtype=np.float64) predictions = predictions / np.sum(predictions, axis=-1, keepdims=True) labels = get_labels() # TODO generalize this COUNT = predictions.shape[0] y_true = predictions[np.arange(COUNT), :, labels[:COUNT]] print("mean acc", np.mean(predictions[:, 0, :].argmax(1) == labels[:COUNT])) predictions[np.arange(COUNT), :, labels[:COUNT]] = 0 y_wrong = np.sum(predictions, axis=-1) logit = np.log(y_true + 1e-45) - np.log(y_wrong + 1e-45) np.save(os.path.join(path, "scores.npy"), logit) def get_labels(): datadir = Path().home() / "opt/data/cifar" train_ds = CIFAR10(root=datadir, train=True, download=True) return np.array(train_ds.targets) def load_stats(): with mp.Pool(8) as p: p.map(load_one, [os.path.join(args.savedir, x) for x in os.listdir(args.savedir)]) if __name__ == "__main__": load_stats()