forked from 626_privacy/tensorflow_privacy
500 lines
19 KiB
Python
500 lines
19 KiB
Python
|
#based off of https://pytorch.org/tutorials/beginner/knowledge_distillation_tutorial.html#prerequisites
|
||
|
import torchvision
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.optim as optim
|
||
|
import torchvision.transforms as transforms
|
||
|
import torchvision.datasets as datasets
|
||
|
|
||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
print(device)
|
||
|
|
||
|
|
||
|
transforms_cifar = transforms.Compose([
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||
|
])
|
||
|
|
||
|
# Loading the CIFAR-10 dataset:
|
||
|
train_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms_cifar)
|
||
|
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms_cifar)
|
||
|
|
||
|
from torch.utils.data import Subset
|
||
|
num_images_to_keep = 2000
|
||
|
train_dataset = Subset(train_dataset, range(min(num_images_to_keep, 50_000)))
|
||
|
test_dataset = Subset(test_dataset, range(min(num_images_to_keep, 10_000)))
|
||
|
#Dataloaders
|
||
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=2)
|
||
|
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=2)
|
||
|
|
||
|
|
||
|
# Deeper neural network class to be used as teacher:
|
||
|
class DeepNN(nn.Module):
|
||
|
def __init__(self, num_classes=10):
|
||
|
super(DeepNN, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(3, 128, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv2d(128, 64, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv2d(64, 32, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
)
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Linear(2048, 512),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(0.1),
|
||
|
nn.Linear(512, num_classes)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.features(x)
|
||
|
x = torch.flatten(x, 1)
|
||
|
x = self.classifier(x)
|
||
|
return x
|
||
|
|
||
|
# Lightweight neural network class to be used as student:
|
||
|
class LightNN(nn.Module):
|
||
|
def __init__(self, num_classes=10):
|
||
|
super(LightNN, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(3, 16, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
nn.Conv2d(16, 16, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
)
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Linear(1024, 256),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(0.1),
|
||
|
nn.Linear(256, num_classes)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.features(x)
|
||
|
x = torch.flatten(x, 1)
|
||
|
x = self.classifier(x)
|
||
|
return x
|
||
|
|
||
|
def train(model, train_loader, epochs, learning_rate, device):
|
||
|
criterion = nn.CrossEntropyLoss()
|
||
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||
|
|
||
|
model.train()
|
||
|
|
||
|
for epoch in range(epochs):
|
||
|
running_loss = 0.0
|
||
|
for inputs, labels in train_loader:
|
||
|
# inputs: A collection of batch_size images
|
||
|
# labels: A vector of dimensionality batch_size with integers denoting class of each image
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
outputs = model(inputs)
|
||
|
|
||
|
# outputs: Output of the network for the collection of images. A tensor of dimensionality batch_size x num_classes
|
||
|
# labels: The actual labels of the images. Vector of dimensionality batch_size
|
||
|
loss = criterion(outputs, labels)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
running_loss += loss.item()
|
||
|
|
||
|
print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss / len(train_loader)}")
|
||
|
|
||
|
def test(model, test_loader, device):
|
||
|
model.to(device)
|
||
|
model.eval()
|
||
|
|
||
|
correct = 0
|
||
|
total = 0
|
||
|
|
||
|
with torch.no_grad():
|
||
|
for inputs, labels in test_loader:
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
|
||
|
outputs = model(inputs)
|
||
|
_, predicted = torch.max(outputs.data, 1)
|
||
|
|
||
|
total += labels.size(0)
|
||
|
correct += (predicted == labels).sum().item()
|
||
|
|
||
|
accuracy = 100 * correct / total
|
||
|
print(f"Test Accuracy: {accuracy:.2f}%")
|
||
|
return accuracy
|
||
|
|
||
|
torch.manual_seed(42)
|
||
|
nn_deep = DeepNN(num_classes=10).to(device)
|
||
|
train(nn_deep, train_loader, epochs=10, learning_rate=0.001, device=device)
|
||
|
test_accuracy_deep = test(nn_deep, test_loader, device)
|
||
|
|
||
|
# Instantiate the lightweight network:
|
||
|
torch.manual_seed(42)
|
||
|
nn_light = LightNN(num_classes=10).to(device)
|
||
|
|
||
|
|
||
|
torch.manual_seed(42)
|
||
|
new_nn_light = LightNN(num_classes=10).to(device)
|
||
|
|
||
|
# Print the norm of the first layer of the initial lightweight model
|
||
|
print("Norm of 1st layer of nn_light:", torch.norm(nn_light.features[0].weight).item())
|
||
|
# Print the norm of the first layer of the new lightweight model
|
||
|
print("Norm of 1st layer of new_nn_light:", torch.norm(new_nn_light.features[0].weight).item())
|
||
|
|
||
|
|
||
|
total_params_deep = "{:,}".format(sum(p.numel() for p in nn_deep.parameters()))
|
||
|
print(f"DeepNN parameters: {total_params_deep}")
|
||
|
total_params_light = "{:,}".format(sum(p.numel() for p in nn_light.parameters()))
|
||
|
print(f"LightNN parameters: {total_params_light}")
|
||
|
|
||
|
train(nn_light, train_loader, epochs=10, learning_rate=0.001, device=device)
|
||
|
test_accuracy_light_ce = test(nn_light, test_loader, device)
|
||
|
|
||
|
print(f"Teacher accuracy: {test_accuracy_deep:.2f}%")
|
||
|
print(f"Student accuracy: {test_accuracy_light_ce:.2f}%")
|
||
|
|
||
|
|
||
|
def train_knowledge_distillation(teacher, student, train_loader, epochs, learning_rate, T, soft_target_loss_weight, ce_loss_weight, device):
|
||
|
ce_loss = nn.CrossEntropyLoss()
|
||
|
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
|
||
|
|
||
|
teacher.eval() # Teacher set to evaluation mode
|
||
|
student.train() # Student to train mode
|
||
|
|
||
|
for epoch in range(epochs):
|
||
|
running_loss = 0.0
|
||
|
for inputs, labels in train_loader:
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
|
||
|
# Forward pass with the teacher model - do not save gradients here as we do not change the teacher's weights
|
||
|
with torch.no_grad():
|
||
|
teacher_logits = teacher(inputs)
|
||
|
|
||
|
# Forward pass with the student model
|
||
|
student_logits = student(inputs)
|
||
|
|
||
|
#Soften the student logits by applying softmax first and log() second
|
||
|
soft_targets = nn.functional.softmax(teacher_logits / T, dim=-1)
|
||
|
soft_prob = nn.functional.log_softmax(student_logits / T, dim=-1)
|
||
|
|
||
|
# Calculate the soft targets loss. Scaled by T**2 as suggested by the authors of the paper "Distilling the knowledge in a neural network"
|
||
|
soft_targets_loss = torch.sum(soft_targets * (soft_targets.log() - soft_prob)) / soft_prob.size()[0] * (T**2)
|
||
|
|
||
|
# Calculate the true label loss
|
||
|
label_loss = ce_loss(student_logits, labels)
|
||
|
|
||
|
# Weighted sum of the two losses
|
||
|
loss = soft_target_loss_weight * soft_targets_loss + ce_loss_weight * label_loss
|
||
|
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
running_loss += loss.item()
|
||
|
|
||
|
print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss / len(train_loader)}")
|
||
|
|
||
|
train_knowledge_distillation(teacher=nn_deep, student=new_nn_light, train_loader=train_loader, epochs=10, learning_rate=0.001, T=2, soft_target_loss_weight=0.25, ce_loss_weight=0.75, device=device)
|
||
|
test_accuracy_light_ce_and_kd = test(new_nn_light, test_loader, device)
|
||
|
|
||
|
# Compare the student test accuracy with and without the teacher, after distillation
|
||
|
print(f"Teacher accuracy: {test_accuracy_deep:.2f}%")
|
||
|
print(f"Student accuracy without teacher: {test_accuracy_light_ce:.2f}%")
|
||
|
print(f"Student accuracy with CE + KD: {test_accuracy_light_ce_and_kd:.2f}%")
|
||
|
|
||
|
|
||
|
class ModifiedDeepNNCosine(nn.Module):
|
||
|
def __init__(self, num_classes=10):
|
||
|
super(ModifiedDeepNNCosine, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(3, 128, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv2d(128, 64, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv2d(64, 32, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
)
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Linear(2048, 512),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(0.1),
|
||
|
nn.Linear(512, num_classes)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.features(x)
|
||
|
flattened_conv_output = torch.flatten(x, 1)
|
||
|
x = self.classifier(flattened_conv_output)
|
||
|
flattened_conv_output_after_pooling = torch.nn.functional.avg_pool1d(flattened_conv_output, 2)
|
||
|
return x, flattened_conv_output_after_pooling
|
||
|
|
||
|
# Create a similar student class where we return a tuple. We do not apply pooling after flattening.
|
||
|
class ModifiedLightNNCosine(nn.Module):
|
||
|
def __init__(self, num_classes=10):
|
||
|
super(ModifiedLightNNCosine, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(3, 16, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
nn.Conv2d(16, 16, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
)
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Linear(1024, 256),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(0.1),
|
||
|
nn.Linear(256, num_classes)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.features(x)
|
||
|
flattened_conv_output = torch.flatten(x, 1)
|
||
|
x = self.classifier(flattened_conv_output)
|
||
|
return x, flattened_conv_output
|
||
|
|
||
|
# We do not have to train the modified deep network from scratch of course, we just load its weights from the trained instance
|
||
|
modified_nn_deep = ModifiedDeepNNCosine(num_classes=10).to(device)
|
||
|
modified_nn_deep.load_state_dict(nn_deep.state_dict())
|
||
|
|
||
|
# Once again ensure the norm of the first layer is the same for both networks
|
||
|
print("Norm of 1st layer for deep_nn:", torch.norm(nn_deep.features[0].weight).item())
|
||
|
print("Norm of 1st layer for modified_deep_nn:", torch.norm(modified_nn_deep.features[0].weight).item())
|
||
|
|
||
|
# Initialize a modified lightweight network with the same seed as our other lightweight instances. This will be trained from scratch to examine the effectiveness of cosine loss minimization.
|
||
|
torch.manual_seed(42)
|
||
|
modified_nn_light = ModifiedLightNNCosine(num_classes=10).to(device)
|
||
|
print("Norm of 1st layer:", torch.norm(modified_nn_light.features[0].weight).item())
|
||
|
|
||
|
# Create a sample input tensor
|
||
|
sample_input = torch.randn(128, 3, 32, 32).to(device) # Batch size: 128, Filters: 3, Image size: 32x32
|
||
|
|
||
|
# Pass the input through the student
|
||
|
logits, hidden_representation = modified_nn_light(sample_input)
|
||
|
|
||
|
# Print the shapes of the tensors
|
||
|
print("Student logits shape:", logits.shape) # batch_size x total_classes
|
||
|
print("Student hidden representation shape:", hidden_representation.shape) # batch_size x hidden_representation_size
|
||
|
|
||
|
# Pass the input through the teacher
|
||
|
logits, hidden_representation = modified_nn_deep(sample_input)
|
||
|
|
||
|
# Print the shapes of the tensors
|
||
|
print("Teacher logits shape:", logits.shape) # batch_size x total_classes
|
||
|
print("Teacher hidden representation shape:", hidden_representation.shape) # batch_size x hidden_representation_size
|
||
|
|
||
|
def train_cosine_loss(teacher, student, train_loader, epochs, learning_rate, hidden_rep_loss_weight, ce_loss_weight, device):
|
||
|
ce_loss = nn.CrossEntropyLoss()
|
||
|
cosine_loss = nn.CosineEmbeddingLoss()
|
||
|
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
|
||
|
|
||
|
teacher.to(device)
|
||
|
student.to(device)
|
||
|
teacher.eval() # Teacher set to evaluation mode
|
||
|
student.train() # Student to train mode
|
||
|
|
||
|
for epoch in range(epochs):
|
||
|
running_loss = 0.0
|
||
|
for inputs, labels in train_loader:
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
|
||
|
# Forward pass with the teacher model and keep only the hidden representation
|
||
|
with torch.no_grad():
|
||
|
_, teacher_hidden_representation = teacher(inputs)
|
||
|
|
||
|
# Forward pass with the student model
|
||
|
student_logits, student_hidden_representation = student(inputs)
|
||
|
|
||
|
# Calculate the cosine loss. Target is a vector of ones. From the loss formula above we can see that is the case where loss minimization leads to cosine similarity increase.
|
||
|
hidden_rep_loss = cosine_loss(student_hidden_representation, teacher_hidden_representation, target=torch.ones(inputs.size(0)).to(device))
|
||
|
|
||
|
# Calculate the true label loss
|
||
|
label_loss = ce_loss(student_logits, labels)
|
||
|
|
||
|
# Weighted sum of the two losses
|
||
|
loss = hidden_rep_loss_weight * hidden_rep_loss + ce_loss_weight * label_loss
|
||
|
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
running_loss += loss.item()
|
||
|
|
||
|
print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss / len(train_loader)}")
|
||
|
|
||
|
def test_multiple_outputs(model, test_loader, device):
|
||
|
model.to(device)
|
||
|
model.eval()
|
||
|
|
||
|
correct = 0
|
||
|
total = 0
|
||
|
|
||
|
with torch.no_grad():
|
||
|
for inputs, labels in test_loader:
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
|
||
|
outputs, _ = model(inputs) # Disregard the second tensor of the tuple
|
||
|
_, predicted = torch.max(outputs.data, 1)
|
||
|
|
||
|
total += labels.size(0)
|
||
|
correct += (predicted == labels).sum().item()
|
||
|
|
||
|
accuracy = 100 * correct / total
|
||
|
print(f"Test Accuracy: {accuracy:.2f}%")
|
||
|
return accuracy
|
||
|
|
||
|
# Train and test the lightweight network with cross entropy loss
|
||
|
train_cosine_loss(teacher=modified_nn_deep, student=modified_nn_light, train_loader=train_loader, epochs=10, learning_rate=0.001, hidden_rep_loss_weight=0.25, ce_loss_weight=0.75, device=device)
|
||
|
test_accuracy_light_ce_and_cosine_loss = test_multiple_outputs(modified_nn_light, test_loader, device)
|
||
|
|
||
|
|
||
|
# Pass the sample input only from the convolutional feature extractor
|
||
|
convolutional_fe_output_student = nn_light.features(sample_input)
|
||
|
convolutional_fe_output_teacher = nn_deep.features(sample_input)
|
||
|
|
||
|
# Print their shapes
|
||
|
print("Student's feature extractor output shape: ", convolutional_fe_output_student.shape)
|
||
|
print("Teacher's feature extractor output shape: ", convolutional_fe_output_teacher.shape)
|
||
|
|
||
|
class ModifiedDeepNNRegressor(nn.Module):
|
||
|
def __init__(self, num_classes=10):
|
||
|
super(ModifiedDeepNNRegressor, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(3, 128, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv2d(128, 64, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv2d(64, 32, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
)
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Linear(2048, 512),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(0.1),
|
||
|
nn.Linear(512, num_classes)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.features(x)
|
||
|
conv_feature_map = x
|
||
|
x = torch.flatten(x, 1)
|
||
|
x = self.classifier(x)
|
||
|
return x, conv_feature_map
|
||
|
|
||
|
class ModifiedLightNNRegressor(nn.Module):
|
||
|
def __init__(self, num_classes=10):
|
||
|
super(ModifiedLightNNRegressor, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(3, 16, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
nn.Conv2d(16, 16, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
)
|
||
|
# Include an extra regressor (in our case linear)
|
||
|
self.regressor = nn.Sequential(
|
||
|
nn.Conv2d(16, 32, kernel_size=3, padding=1)
|
||
|
)
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Linear(1024, 256),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(0.1),
|
||
|
nn.Linear(256, num_classes)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.features(x)
|
||
|
regressor_output = self.regressor(x)
|
||
|
x = torch.flatten(x, 1)
|
||
|
x = self.classifier(x)
|
||
|
return x, regressor_output
|
||
|
|
||
|
|
||
|
def train_mse_loss(teacher, student, train_loader, epochs, learning_rate, feature_map_weight, ce_loss_weight, device):
|
||
|
ce_loss = nn.CrossEntropyLoss()
|
||
|
mse_loss = nn.MSELoss()
|
||
|
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
|
||
|
|
||
|
teacher.to(device)
|
||
|
student.to(device)
|
||
|
teacher.eval() # Teacher set to evaluation mode
|
||
|
student.train() # Student to train mode
|
||
|
|
||
|
for epoch in range(epochs):
|
||
|
running_loss = 0.0
|
||
|
for inputs, labels in train_loader:
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
|
||
|
# Again ignore teacher logits
|
||
|
with torch.no_grad():
|
||
|
_, teacher_feature_map = teacher(inputs)
|
||
|
|
||
|
# Forward pass with the student model
|
||
|
student_logits, regressor_feature_map = student(inputs)
|
||
|
|
||
|
# Calculate the loss
|
||
|
hidden_rep_loss = mse_loss(regressor_feature_map, teacher_feature_map)
|
||
|
|
||
|
# Calculate the true label loss
|
||
|
label_loss = ce_loss(student_logits, labels)
|
||
|
|
||
|
# Weighted sum of the two losses
|
||
|
loss = feature_map_weight * hidden_rep_loss + ce_loss_weight * label_loss
|
||
|
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
running_loss += loss.item()
|
||
|
|
||
|
print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss / len(train_loader)}")
|
||
|
|
||
|
|
||
|
# Initialize a ModifiedLightNNRegressor
|
||
|
torch.manual_seed(42)
|
||
|
modified_nn_light_reg = ModifiedLightNNRegressor(num_classes=10).to(device)
|
||
|
|
||
|
# We do not have to train the modified deep network from scratch of course, we just load its weights from the trained instance
|
||
|
modified_nn_deep_reg = ModifiedDeepNNRegressor(num_classes=10).to(device)
|
||
|
modified_nn_deep_reg.load_state_dict(nn_deep.state_dict())
|
||
|
|
||
|
# Train and test once again
|
||
|
train_mse_loss(teacher=modified_nn_deep_reg, student=modified_nn_light_reg, train_loader=train_loader, epochs=10, learning_rate=0.001, feature_map_weight=0.25, ce_loss_weight=0.75, device=device)
|
||
|
test_accuracy_light_ce_and_mse_loss = test_multiple_outputs(modified_nn_light_reg, test_loader, device)
|
||
|
|
||
|
print(f"Teacher accuracy: {test_accuracy_deep:.2f}%")
|
||
|
print(f"Student accuracy without teacher: {test_accuracy_light_ce:.2f}%")
|
||
|
print(f"Student accuracy with CE + KD: {test_accuracy_light_ce_and_kd:.2f}%")
|
||
|
print(f"Student accuracy with CE + CosineLoss: {test_accuracy_light_ce_and_cosine_loss:.2f}%")
|
||
|
print(f"Student accuracy with CE + RegressorMSE: {test_accuracy_light_ce_and_mse_loss:.2f}%")
|
||
|
|
||
|
#
|
||
|
# For more information, see:
|
||
|
#
|
||
|
# - [Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a
|
||
|
# neural network. In: Neural Information Processing System Deep
|
||
|
# Learning Workshop (2015)](https://arxiv.org/abs/1503.02531)
|
||
|
# - [Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C.,
|
||
|
# Bengio, Y.: Fitnets: Hints for thin deep nets. In: Proceedings of
|
||
|
# the International Conference on Learning
|
||
|
# Representations (2015)](https://arxiv.org/abs/1412.6550)
|
||
|
#
|