tensorflow_privacy/research/mi_lira_2021/train.py

333 lines
13 KiB
Python
Raw Permalink Normal View History

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
# pyformat: disable
import functools
import os
import shutil
from typing import Callable
import json
import jax
import jax.numpy as jn
import numpy as np
import tensorflow as tf # For data augmentation.
import tensorflow_datasets as tfds
from absl import app, flags
import objax
from objax.jaxboard import SummaryWriter, Summary
from objax.util import EasyDict
from objax.zoo import convnet, wide_resnet
from dataset import DataSet
FLAGS = flags.FLAGS
def augment(x, shift: int, mirror=True):
"""
Augmentation function used in training the model.
"""
y = x['image']
if mirror:
y = tf.image.random_flip_left_right(y)
y = tf.pad(y, [[shift] * 2, [shift] * 2, [0] * 2], mode='REFLECT')
y = tf.image.random_crop(y, tf.shape(x['image']))
return dict(image=y, label=x['label'])
class TrainLoop(objax.Module):
"""
Training loop for general machine learning models.
Based on the training loop from the objax CIFAR10 example code.
"""
predict: Callable
train_op: Callable
def __init__(self, nclass: int, **kwargs):
self.nclass = nclass
self.params = EasyDict(kwargs)
def train_step(self, summary: Summary, data: dict, progress: np.ndarray):
kv = self.train_op(progress, data['image'].numpy(), data['label'].numpy())
for k, v in kv.items():
if jn.isnan(v):
raise ValueError('NaN, try reducing learning rate', k)
if summary is not None:
summary.scalar(k, float(v))
def train(self, num_train_epochs: int, train_size: int, train: DataSet, test: DataSet, logdir: str, save_steps=100, patience=None):
"""
Completely standard training. Nothing interesting to see here.
"""
checkpoint = objax.io.Checkpoint(logdir, keep_ckpts=20, makedir=True)
start_epoch, last_ckpt = checkpoint.restore(self.vars())
train_iter = iter(train)
progress = np.zeros(jax.local_device_count(), 'f') # for multi-GPU
best_acc = 0
best_acc_epoch = -1
with SummaryWriter(os.path.join(logdir, 'tb')) as tensorboard:
for epoch in range(start_epoch, num_train_epochs):
# Train
summary = Summary()
loop = range(0, train_size, self.params.batch)
for step in loop:
progress[:] = (step + (epoch * train_size)) / (num_train_epochs * train_size)
self.train_step(summary, next(train_iter), progress)
# Eval
accuracy, total = 0, 0
if epoch%FLAGS.eval_steps == 0 and test is not None:
for data in test:
total += data['image'].shape[0]
preds = np.argmax(self.predict(data['image'].numpy()), axis=1)
accuracy += (preds == data['label'].numpy()).sum()
accuracy /= total
summary.scalar('eval/accuracy', 100 * accuracy)
tensorboard.write(summary, step=(epoch + 1) * train_size)
print('Epoch %04d Loss %.2f Accuracy %.2f' % (epoch + 1, summary['losses/xe'](),
summary['eval/accuracy']()))
if summary['eval/accuracy']() > best_acc:
best_acc = summary['eval/accuracy']()
best_acc_epoch = epoch
elif patience is not None and epoch > best_acc_epoch + patience:
print("early stopping!")
checkpoint.save(self.vars(), epoch + 1)
return
else:
print('Epoch %04d Loss %.2f Accuracy --' % (epoch + 1, summary['losses/xe']()))
if epoch%save_steps == save_steps-1:
checkpoint.save(self.vars(), epoch + 1)
# We inherit from the training loop and define predict and train_op.
class MemModule(TrainLoop):
def __init__(self, model: Callable, nclass: int, mnist=False, **kwargs):
"""
Completely standard training. Nothing interesting to see here.
"""
super().__init__(nclass, **kwargs)
self.model = model(1 if mnist else 3, nclass)
self.opt = objax.optimizer.Momentum(self.model.vars())
self.model_ema = objax.optimizer.ExponentialMovingAverageModule(self.model, momentum=0.999, debias=True)
@objax.Function.with_vars(self.model.vars())
def loss(x, label):
logit = self.model(x, training=True)
loss_wd = 0.5 * sum((v.value ** 2).sum() for k, v in self.model.vars().items() if k.endswith('.w'))
loss_xe = objax.functional.loss.cross_entropy_logits(logit, label).mean()
return loss_xe + loss_wd * self.params.weight_decay, {'losses/xe': loss_xe, 'losses/wd': loss_wd}
gv = objax.GradValues(loss, self.model.vars())
self.gv = gv
@objax.Function.with_vars(self.vars())
def train_op(progress, x, y):
g, v = gv(x, y)
lr = self.params.lr * jn.cos(progress * (7 * jn.pi) / (2 * 8))
lr = lr * jn.clip(progress*100,0,1)
self.opt(lr, g)
self.model_ema.update_ema()
return {'monitors/lr': lr, **v[1]}
self.predict = objax.Jit(objax.nn.Sequential([objax.ForceArgs(self.model_ema, training=False)]))
self.train_op = objax.Jit(train_op)
def network(arch: str):
if arch == 'cnn32-3-max':
return functools.partial(convnet.ConvNet, scales=3, filters=32, filters_max=1024,
pooling=objax.functional.max_pool_2d)
elif arch == 'cnn32-3-mean':
return functools.partial(convnet.ConvNet, scales=3, filters=32, filters_max=1024,
pooling=objax.functional.average_pool_2d)
elif arch == 'cnn64-3-max':
return functools.partial(convnet.ConvNet, scales=3, filters=64, filters_max=1024,
pooling=objax.functional.max_pool_2d)
elif arch == 'cnn64-3-mean':
return functools.partial(convnet.ConvNet, scales=3, filters=64, filters_max=1024,
pooling=objax.functional.average_pool_2d)
elif arch == 'wrn28-1':
return functools.partial(wide_resnet.WideResNet, depth=28, width=1)
elif arch == 'wrn28-2':
return functools.partial(wide_resnet.WideResNet, depth=28, width=2)
elif arch == 'wrn28-10':
return functools.partial(wide_resnet.WideResNet, depth=28, width=10)
raise ValueError('Architecture not recognized', arch)
def get_data(seed):
"""
This is the function to generate subsets of the data for training models.
First, we get the training dataset either from the numpy cache
or otherwise we load it from tensorflow datasets.
Then, we compute the subset. This works in one of two ways.
1. If we have a seed, then we just randomly choose examples based on
a prng with that seed, keeping FLAGS.pkeep fraction of the data.
2. Otherwise, if we have an experiment ID, then we do something fancier.
If we run each experiment independently then even after a lot of trials
there will still probably be some examples that were always included
or always excluded. So instead, with experiment IDs, we guarantee that
after FLAGS.num_experiments are done, each example is seen exactly half
of the time in train, and half of the time not in train.
"""
DATA_DIR = os.path.join(os.environ['HOME'], 'TFDS')
if os.path.exists(os.path.join(FLAGS.logdir, "x_train.npy")):
inputs = np.load(os.path.join(FLAGS.logdir, "x_train.npy"))
labels = np.load(os.path.join(FLAGS.logdir, "y_train.npy"))
else:
print("First time, creating dataset")
data = tfds.as_numpy(tfds.load(name=FLAGS.dataset, batch_size=-1, data_dir=DATA_DIR))
inputs = data['train']['image']
labels = data['train']['label']
inputs = (inputs/127.5)-1
np.save(os.path.join(FLAGS.logdir, "x_train.npy"),inputs)
np.save(os.path.join(FLAGS.logdir, "y_train.npy"),labels)
nclass = np.max(labels)+1
np.random.seed(seed)
if FLAGS.num_experiments is not None:
np.random.seed(0)
keep = np.random.uniform(0,1,size=(FLAGS.num_experiments, FLAGS.dataset_size))
order = keep.argsort(0)
keep = order < int(FLAGS.pkeep * FLAGS.num_experiments)
keep = np.array(keep[FLAGS.expid], dtype=bool)
else:
keep = np.random.uniform(0, 1, size=FLAGS.dataset_size) <= FLAGS.pkeep
if FLAGS.only_subset is not None:
keep[FLAGS.only_subset:] = 0
xs = inputs[keep]
ys = labels[keep]
if FLAGS.augment == 'weak':
aug = lambda x: augment(x, 4)
elif FLAGS.augment == 'mirror':
aug = lambda x: augment(x, 0)
elif FLAGS.augment == 'none':
aug = lambda x: augment(x, 0, mirror=False)
else:
raise
train = DataSet.from_arrays(xs, ys,
augment_fn=aug)
test = DataSet.from_tfds(tfds.load(name=FLAGS.dataset, split='test', data_dir=DATA_DIR), xs.shape[1:])
train = train.cache().shuffle(8192).repeat().parse().augment().batch(FLAGS.batch)
train = train.nchw().one_hot(nclass).prefetch(16)
test = test.cache().parse().batch(FLAGS.batch).nchw().prefetch(16)
return train, test, xs, ys, keep, nclass
def main(argv):
del argv
tf.config.experimental.set_visible_devices([], "GPU")
seed = FLAGS.seed
if seed is None:
import time
seed = np.random.randint(0, 1000000000)
seed ^= int(time.time())
args = EasyDict(arch=FLAGS.arch,
lr=FLAGS.lr,
batch=FLAGS.batch,
weight_decay=FLAGS.weight_decay,
augment=FLAGS.augment,
seed=seed)
if FLAGS.tunename:
logdir = '_'.join(sorted('%s=%s' % k for k in args.items()))
elif FLAGS.expid is not None:
logdir = "experiment-%d_%d"%(FLAGS.expid,FLAGS.num_experiments)
else:
logdir = "experiment-"+str(seed)
logdir = os.path.join(FLAGS.logdir, logdir)
if os.path.exists(os.path.join(logdir, "ckpt", "%010d.npz"%FLAGS.epochs)):
print(f"run {FLAGS.expid} already completed.")
return
else:
if os.path.exists(logdir):
print(f"deleting run {FLAGS.expid} that did not complete.")
shutil.rmtree(logdir)
print(f"starting run {FLAGS.expid}.")
if not os.path.exists(logdir):
os.makedirs(logdir)
train, test, xs, ys, keep, nclass = get_data(seed)
# Define the network and train_it
tm = MemModule(network(FLAGS.arch), nclass=nclass,
mnist=FLAGS.dataset == 'mnist',
epochs=FLAGS.epochs,
expid=FLAGS.expid,
num_experiments=FLAGS.num_experiments,
pkeep=FLAGS.pkeep,
save_steps=FLAGS.save_steps,
only_subset=FLAGS.only_subset,
**args
)
r = {}
r.update(tm.params)
open(os.path.join(logdir,'hparams.json'),"w").write(json.dumps(tm.params))
np.save(os.path.join(logdir,'keep.npy'), keep)
tm.train(FLAGS.epochs, len(xs), train, test, logdir,
save_steps=FLAGS.save_steps, patience=FLAGS.patience)
if __name__ == '__main__':
flags.DEFINE_string('arch', 'cnn32-3-mean', 'Model architecture.')
flags.DEFINE_float('lr', 0.1, 'Learning rate.')
flags.DEFINE_string('dataset', 'cifar10', 'Dataset.')
flags.DEFINE_float('weight_decay', 0.0005, 'Weight decay ratio.')
flags.DEFINE_integer('batch', 256, 'Batch size')
flags.DEFINE_integer('epochs', 501, 'Training duration in number of epochs.')
flags.DEFINE_string('logdir', 'experiments', 'Directory where to save checkpoints and tensorboard data.')
flags.DEFINE_integer('seed', None, 'Training seed.')
flags.DEFINE_float('pkeep', .5, 'Probability to keep examples.')
flags.DEFINE_integer('expid', None, 'Experiment ID')
flags.DEFINE_integer('num_experiments', None, 'Number of experiments')
flags.DEFINE_string('augment', 'weak', 'Strong or weak augmentation')
flags.DEFINE_integer('only_subset', None, 'Only train on a subset of images.')
flags.DEFINE_integer('dataset_size', 50000, 'number of examples to keep.')
flags.DEFINE_integer('eval_steps', 1, 'how often to get eval accuracy.')
flags.DEFINE_integer('abort_after_epoch', None, 'stop trainin early at an epoch')
flags.DEFINE_integer('save_steps', 10, 'how often to get save model.')
flags.DEFINE_integer('patience', None, 'Early stopping after this many epochs without progress')
flags.DEFINE_bool('tunename', False, 'Use tune name?')
app.run(main)