forked from 626_privacy/tensorflow_privacy
96 lines
3.2 KiB
Python
96 lines
3.2 KiB
Python
|
# Copyright 2018, The TensorFlow Authors.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Implements PrivateQuery interface for no privacy average queries."""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from privacy.optimizers import private_queries
|
||
|
|
||
|
nest = tf.contrib.framework.nest
|
||
|
|
||
|
|
||
|
class NoPrivacySumQuery(private_queries.PrivateSumQuery):
|
||
|
"""Implements PrivateQuery interface for a sum query with no privacy.
|
||
|
|
||
|
Accumulates vectors without clipping or adding noise.
|
||
|
"""
|
||
|
|
||
|
def initial_global_state(self):
|
||
|
"""Returns the initial global state for the NoPrivacySumQuery."""
|
||
|
return None
|
||
|
|
||
|
def derive_sample_params(self, global_state):
|
||
|
"""See base class."""
|
||
|
del global_state # unused.
|
||
|
return None
|
||
|
|
||
|
def initial_sample_state(self, global_state, tensors):
|
||
|
"""See base class."""
|
||
|
del global_state # unused.
|
||
|
return nest.map_structure(tf.zeros_like, tensors)
|
||
|
|
||
|
def accumulate_record(self, params, sample_state, record):
|
||
|
"""See base class."""
|
||
|
del params # unused.
|
||
|
return nest.map_structure(tf.add, sample_state, record)
|
||
|
|
||
|
def get_noised_sum(self, sample_state, global_state):
|
||
|
"""See base class."""
|
||
|
return sample_state, global_state
|
||
|
|
||
|
|
||
|
class NoPrivacyAverageQuery(private_queries.PrivateAverageQuery):
|
||
|
"""Implements PrivateQuery interface for an average query with no privacy.
|
||
|
|
||
|
Accumulates vectors and normalizes by the total number of accumulated vectors.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Initializes the NoPrivacyAverageQuery."""
|
||
|
self._numerator = NoPrivacySumQuery()
|
||
|
|
||
|
def initial_global_state(self):
|
||
|
"""Returns the initial global state for the NoPrivacyAverageQuery."""
|
||
|
return self._numerator.initial_global_state()
|
||
|
|
||
|
def derive_sample_params(self, global_state):
|
||
|
"""See base class."""
|
||
|
del global_state # unused.
|
||
|
return None
|
||
|
|
||
|
def initial_sample_state(self, global_state, tensors):
|
||
|
"""See base class."""
|
||
|
return self._numerator.initial_sample_state(global_state, tensors), 0.0
|
||
|
|
||
|
def accumulate_record(self, params, sample_state, record):
|
||
|
"""See base class."""
|
||
|
sum_sample_state, denominator = sample_state
|
||
|
return self._numerator.accumulate_record(params, sum_sample_state,
|
||
|
record), tf.add(denominator, 1.0)
|
||
|
|
||
|
def get_noised_average(self, sample_state, global_state):
|
||
|
"""See base class."""
|
||
|
sum_sample_state, denominator = sample_state
|
||
|
exact_sum, new_global_state = self._numerator.get_noised_sum(
|
||
|
sum_sample_state, global_state)
|
||
|
|
||
|
def normalize(v):
|
||
|
return tf.truediv(v, denominator)
|
||
|
|
||
|
return nest.map_structure(normalize, exact_sum), new_global_state
|