2019-02-08 12:21:20 -07:00
|
|
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
"""Tests for PrivacyLedger."""
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
2019-02-08 17:55:29 -07:00
|
|
|
from privacy.analysis import privacy_ledger
|
2019-03-25 11:20:41 -06:00
|
|
|
from privacy.dp_query import gaussian_query
|
|
|
|
from privacy.dp_query import nested_query
|
|
|
|
from privacy.dp_query import test_utils
|
2019-02-08 12:21:20 -07:00
|
|
|
|
|
|
|
tf.enable_eager_execution()
|
|
|
|
|
|
|
|
|
|
|
|
class PrivacyLedgerTest(tf.test.TestCase):
|
|
|
|
|
|
|
|
def test_basic(self):
|
|
|
|
ledger = privacy_ledger.PrivacyLedger(10, 0.1, 50, 50)
|
|
|
|
ledger.record_sum_query(5.0, 1.0)
|
|
|
|
ledger.record_sum_query(2.0, 0.5)
|
|
|
|
|
|
|
|
ledger.finalize_sample()
|
|
|
|
|
|
|
|
expected_queries = [[5.0, 1.0], [2.0, 0.5]]
|
|
|
|
formatted = ledger.get_formatted_ledger_eager()
|
|
|
|
|
|
|
|
sample = formatted[0]
|
|
|
|
self.assertAllClose(sample.population_size, 10.0)
|
|
|
|
self.assertAllClose(sample.selection_probability, 0.1)
|
|
|
|
self.assertAllClose(sorted(sample.queries), sorted(expected_queries))
|
|
|
|
|
|
|
|
def test_sum_query(self):
|
|
|
|
record1 = tf.constant([2.0, 0.0])
|
|
|
|
record2 = tf.constant([-1.0, 1.0])
|
|
|
|
|
|
|
|
population_size = tf.Variable(0)
|
|
|
|
selection_probability = tf.Variable(0.0)
|
|
|
|
ledger = privacy_ledger.PrivacyLedger(
|
|
|
|
population_size, selection_probability, 50, 50)
|
|
|
|
|
|
|
|
query = gaussian_query.GaussianSumQuery(
|
|
|
|
l2_norm_clip=10.0, stddev=0.0, ledger=ledger)
|
|
|
|
query = privacy_ledger.QueryWithLedger(query, ledger)
|
|
|
|
|
|
|
|
# First sample.
|
|
|
|
tf.assign(population_size, 10)
|
|
|
|
tf.assign(selection_probability, 0.1)
|
|
|
|
test_utils.run_query(query, [record1, record2])
|
|
|
|
|
|
|
|
expected_queries = [[10.0, 0.0]]
|
|
|
|
formatted = ledger.get_formatted_ledger_eager()
|
|
|
|
sample_1 = formatted[0]
|
|
|
|
self.assertAllClose(sample_1.population_size, 10.0)
|
|
|
|
self.assertAllClose(sample_1.selection_probability, 0.1)
|
|
|
|
self.assertAllClose(sample_1.queries, expected_queries)
|
|
|
|
|
|
|
|
# Second sample.
|
|
|
|
tf.assign(population_size, 20)
|
|
|
|
tf.assign(selection_probability, 0.2)
|
|
|
|
test_utils.run_query(query, [record1, record2])
|
|
|
|
|
|
|
|
formatted = ledger.get_formatted_ledger_eager()
|
|
|
|
sample_1, sample_2 = formatted
|
|
|
|
self.assertAllClose(sample_1.population_size, 10.0)
|
|
|
|
self.assertAllClose(sample_1.selection_probability, 0.1)
|
|
|
|
self.assertAllClose(sample_1.queries, expected_queries)
|
|
|
|
|
|
|
|
self.assertAllClose(sample_2.population_size, 20.0)
|
|
|
|
self.assertAllClose(sample_2.selection_probability, 0.2)
|
|
|
|
self.assertAllClose(sample_2.queries, expected_queries)
|
|
|
|
|
|
|
|
def test_nested_query(self):
|
|
|
|
population_size = tf.Variable(0)
|
|
|
|
selection_probability = tf.Variable(0.0)
|
|
|
|
ledger = privacy_ledger.PrivacyLedger(
|
|
|
|
population_size, selection_probability, 50, 50)
|
|
|
|
|
|
|
|
query1 = gaussian_query.GaussianAverageQuery(
|
|
|
|
l2_norm_clip=4.0, sum_stddev=2.0, denominator=5.0, ledger=ledger)
|
|
|
|
query2 = gaussian_query.GaussianAverageQuery(
|
|
|
|
l2_norm_clip=5.0, sum_stddev=1.0, denominator=5.0, ledger=ledger)
|
|
|
|
|
|
|
|
query = nested_query.NestedQuery([query1, query2])
|
|
|
|
query = privacy_ledger.QueryWithLedger(query, ledger)
|
|
|
|
|
|
|
|
record1 = [1.0, [12.0, 9.0]]
|
|
|
|
record2 = [5.0, [1.0, 2.0]]
|
|
|
|
|
|
|
|
# First sample.
|
|
|
|
tf.assign(population_size, 10)
|
|
|
|
tf.assign(selection_probability, 0.1)
|
|
|
|
test_utils.run_query(query, [record1, record2])
|
|
|
|
|
|
|
|
expected_queries = [[4.0, 2.0], [5.0, 1.0]]
|
|
|
|
formatted = ledger.get_formatted_ledger_eager()
|
|
|
|
sample_1 = formatted[0]
|
|
|
|
self.assertAllClose(sample_1.population_size, 10.0)
|
|
|
|
self.assertAllClose(sample_1.selection_probability, 0.1)
|
|
|
|
self.assertAllClose(sorted(sample_1.queries), sorted(expected_queries))
|
|
|
|
|
|
|
|
# Second sample.
|
|
|
|
tf.assign(population_size, 20)
|
|
|
|
tf.assign(selection_probability, 0.2)
|
|
|
|
test_utils.run_query(query, [record1, record2])
|
|
|
|
|
|
|
|
formatted = ledger.get_formatted_ledger_eager()
|
|
|
|
sample_1, sample_2 = formatted
|
|
|
|
self.assertAllClose(sample_1.population_size, 10.0)
|
|
|
|
self.assertAllClose(sample_1.selection_probability, 0.1)
|
|
|
|
self.assertAllClose(sorted(sample_1.queries), sorted(expected_queries))
|
|
|
|
|
|
|
|
self.assertAllClose(sample_2.population_size, 20.0)
|
|
|
|
self.assertAllClose(sample_2.selection_probability, 0.2)
|
|
|
|
self.assertAllClose(sorted(sample_2.queries), sorted(expected_queries))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
tf.test.main()
|