tensorflow_privacy/research/audit_2020/mean_audit.py

153 lines
5.2 KiB
Python
Raw Normal View History

2021-10-19 16:55:46 -06:00
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2021-02-15 17:27:18 -07:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Auditing a model which computes the mean of a synthetic dataset.
This gives an example for instrumenting the auditor to audit a user-given sample."""
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
from absl import app
from absl import flags
import audit
#### FLAGS
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 1.1,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 250, 'Batch size')
flags.DEFINE_integer('d', 250, 'Data dimension')
flags.DEFINE_integer('epochs', 1, 'Number of epochs')
flags.DEFINE_integer(
'microbatches', 250, 'Number of microbatches '
'(must evenly divide batch_size)')
flags.DEFINE_string('attack_type', "clip_aware", 'clip_aware or backdoor')
flags.DEFINE_integer('num_trials', 100, 'Number of trials for auditing')
flags.DEFINE_float('attack_l2_norm', 10, 'Size of poisoning data')
flags.DEFINE_float('alpha', 0.05, '1-confidence')
FLAGS = flags.FLAGS
def compute_epsilon(train_size):
"""Computes epsilon value for given hyperparameters."""
if FLAGS.noise_multiplier == 0.0:
return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
sampling_probability = FLAGS.batch_size / train_size
steps = FLAGS.epochs * train_size / FLAGS.batch_size
rdp = compute_rdp(q=sampling_probability,
noise_multiplier=FLAGS.noise_multiplier,
steps=steps,
orders=orders)
# Delta is set to approximate 1 / (number of training points).
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
def build_model(x, y):
del x, y
model = tf.keras.Sequential([tf.keras.layers.Dense(
1, input_shape=(FLAGS.d,),
use_bias=False, kernel_initializer=tf.keras.initializers.Zeros())])
return model
def train_model(model, train_x, train_y):
"""Train the model on given data."""
optimizer = dp_optimizer_vectorized.VectorizedDPSGD(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate)
# gradient of (.5-x.w)^2 is 2(.5-x.w)x
loss = tf.keras.losses.MeanSquaredError(reduction=tf.losses.Reduction.NONE)
# Compile model with Keras
model.compile(optimizer=optimizer, loss=loss, metrics=['mse'])
# Train model with Keras
model.fit(train_x, train_y,
epochs=FLAGS.epochs,
validation_data=(train_x, train_y),
batch_size=FLAGS.batch_size,
verbose=0)
return model
def membership_test(model, pois_x, pois_y):
"""Membership inference - detect poisoning."""
del pois_y
return model.predict(pois_x)
def gen_data(n, d):
"""Make binomial dataset."""
x = np.random.normal(size=(n, d))
y = np.ones(shape=(n,))/2.
return x, y
def train_and_score(dataset):
"""Complete training run with membership inference score."""
x, y, pois_x, pois_y, i = dataset
np.random.seed(i)
tf.set_random_seed(i)
model = build_model(x, y)
model = train_model(model, x, y)
return membership_test(model, pois_x, pois_y)
def main(unused_argv):
del unused_argv
# Load training and test data.
np.random.seed(0)
x, y = gen_data(1 + FLAGS.batch_size, FLAGS.d)
auditor = audit.AuditAttack(x, y, train_and_score)
# we will instrument the auditor to simply backdoor the last feature
pois_x1, pois_x2 = x[:-1].copy(), x[:-1].copy()
pois_x1[-1] = x[-1]
pois_y = y[:-1]
target_x = x[-1][None, :]
assert np.unique(np.nonzero(pois_x1 - pois_x2)[0]).size == 1
pois_data = (pois_x1, pois_y), (pois_x2, pois_y), (target_x, y[-1])
poisoning = {}
poisoning["data"] = (pois_data[0], pois_data[1])
poisoning["pois"] = pois_data[2]
auditor.poisoning = poisoning
thresh, _, _ = auditor.run(1, None, FLAGS.num_trials, alpha=FLAGS.alpha)
_, eps, acc = auditor.run(1, None, FLAGS.num_trials, alpha=FLAGS.alpha,
threshold=thresh)
2021-10-19 16:55:46 -06:00
epsilon_upper_bound = compute_epsilon(FLAGS.batch_size)
2021-02-15 17:27:18 -07:00
2021-10-19 16:55:46 -06:00
print("Analysis epsilon is {}.".format(epsilon_upper_bound))
2021-02-15 17:27:18 -07:00
print("At threshold={}, epsilon={}.".format(thresh, eps))
print("The best accuracy at distinguishing poisoning is {}.".format(acc))
if __name__ == '__main__':
app.run(main)