2021-10-19 16:55:46 -06:00
|
|
|
# Copyright 2021, The TensorFlow Authors.
|
2021-02-15 17:27:18 -07:00
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
# Lint as: python3
|
|
|
|
"""Tests for audit.py."""
|
|
|
|
|
|
|
|
from absl.testing import absltest
|
|
|
|
from absl.testing import parameterized
|
|
|
|
import numpy as np
|
|
|
|
import audit
|
|
|
|
|
|
|
|
def dummy_train_and_score_function(dataset):
|
|
|
|
del dataset
|
|
|
|
return 0
|
|
|
|
|
|
|
|
def get_auditor():
|
|
|
|
poisoning = {}
|
|
|
|
datasets = (np.zeros((5, 2)), np.zeros(5)), (np.zeros((5, 2)), np.zeros(5))
|
|
|
|
poisoning["data"] = datasets
|
|
|
|
poisoning["pois"] = (datasets[0][0][0], datasets[0][1][0])
|
|
|
|
auditor = audit.AuditAttack(datasets[0][0], datasets[0][1],
|
|
|
|
dummy_train_and_score_function)
|
|
|
|
auditor.poisoning = poisoning
|
|
|
|
|
|
|
|
return auditor
|
|
|
|
|
|
|
|
|
|
|
|
class AuditParameterizedTest(parameterized.TestCase):
|
|
|
|
"""Class to test parameterized audit.py functions."""
|
|
|
|
@parameterized.named_parameters(
|
|
|
|
('Test0', np.ones(500), np.zeros(500), 0.5, 0.01, 1,
|
|
|
|
(4.541915810224092, 0.9894593118113243)),
|
|
|
|
('Test1', np.ones(500), np.zeros(500), 0.5, 0.01, 2,
|
|
|
|
(2.27095790511, 0.9894593118113243)),
|
|
|
|
('Test2', np.ones(500), np.ones(500), 0.5, 0.01, 1,
|
|
|
|
(0, 0))
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_compute_epsilon_and_acc(self, poison_scores, unpois_scores,
|
|
|
|
threshold, pois_ct, alpha, expected_res):
|
|
|
|
expected_eps, expected_acc = expected_res
|
|
|
|
computed_res = audit.compute_epsilon_and_acc(poison_scores, unpois_scores,
|
|
|
|
threshold, pois_ct, alpha)
|
|
|
|
computed_eps, computed_acc = computed_res
|
|
|
|
self.assertAlmostEqual(computed_eps, expected_eps)
|
|
|
|
self.assertAlmostEqual(computed_acc, expected_acc)
|
|
|
|
|
|
|
|
@parameterized.named_parameters(
|
|
|
|
('Test0', [1]*500, [0]*250 + [.5]*250, 1, 0.01, .5,
|
|
|
|
(.5, 4.541915810224092, 0.9894593118113243)),
|
|
|
|
('Test1', [1]*500, [0]*250 + [.5]*250, 1, 0.01, None,
|
|
|
|
(.5, 4.541915810224092, 0.9894593118113243)),
|
|
|
|
('Test2', [1]*500, [0]*500, 2, 0.01, .5,
|
|
|
|
(.5, 2.27095790511, 0.9894593118113243)),
|
|
|
|
)
|
|
|
|
|
|
|
|
def test_compute_results(self, poison_scores, unpois_scores, pois_ct,
|
|
|
|
alpha, threshold, expected_res):
|
|
|
|
expected_thresh, expected_eps, expected_acc = expected_res
|
|
|
|
computed_res = audit.compute_results(poison_scores, unpois_scores,
|
|
|
|
pois_ct, alpha, threshold)
|
|
|
|
computed_thresh, computed_eps, computed_acc = computed_res
|
|
|
|
self.assertAlmostEqual(computed_thresh, expected_thresh)
|
|
|
|
self.assertAlmostEqual(computed_eps, expected_eps)
|
|
|
|
self.assertAlmostEqual(computed_acc, expected_acc)
|
|
|
|
|
|
|
|
|
|
|
|
class AuditAttackTest(absltest.TestCase):
|
|
|
|
"""Nonparameterized audit.py test class."""
|
|
|
|
def test_run_experiments(self):
|
|
|
|
auditor = get_auditor()
|
|
|
|
pois, unpois = auditor.run_experiments(100)
|
2021-10-19 16:55:46 -06:00
|
|
|
expected = [0]*100
|
2021-02-15 17:27:18 -07:00
|
|
|
self.assertListEqual(pois, expected)
|
|
|
|
self.assertListEqual(unpois, expected)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
absltest.main()
|