tensorflow_privacy/privacy/bolton/model_test.py

495 lines
14 KiB
Python
Raw Normal View History

# Copyright 2018, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unit testing for model.py"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.platform import test
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2
from tensorflow.python.keras import losses
from tensorflow.python.framework import ops as _ops
from tensorflow.python.framework import test_util
from privacy.bolton import model
from privacy.bolton.loss import StrongConvexMixin
from absl.testing import parameterized
from absl.testing import absltest
from tensorflow.python.keras.regularizers import L1L2
class TestLoss(losses.Loss):
"""Test loss function for testing Bolton model"""
def __init__(self, reg_lambda, C, radius_constant, name='test'):
super(TestLoss, self).__init__(name=name)
self.reg_lambda = reg_lambda
self.C = C
self.radius_constant = radius_constant
def radius(self):
"""Radius of R-Ball (value to normalize weights to after each batch)
Returns: radius
"""
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
def gamma(self):
""" Gamma strongly convex
Returns: gamma
"""
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
def beta(self, class_weight):
"""Beta smoothess
Args:
class_weight: the class weights used.
Returns: Beta
"""
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
def lipchitz_constant(self, class_weight):
""" L lipchitz continuous
Args:
class_weight: class weights used
Returns: L
"""
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
def call(self, val0, val1):
"""Loss function that is minimized at the mean of the input points."""
return 0.5 * tf.reduce_sum(tf.math.squared_difference(val0, val1), axis=1)
def max_class_weight(self, class_weight):
if class_weight is None:
return 1
def kernel_regularizer(self):
return L1L2(l2=self.reg_lambda)
class TestOptimizer(OptimizerV2):
"""Test optimizer used for testing Bolton model"""
def __init__(self):
super(TestOptimizer, self).__init__('test')
def compute_gradients(self):
return 0
def get_config(self):
return {}
def _create_slots(self, var):
pass
def _resource_apply_dense(self, grad, handle):
return grad
def _resource_apply_sparse(self, grad, handle, indices):
return grad
class InitTests(keras_parameterized.TestCase):
"""tests for keras model initialization"""
@parameterized.named_parameters([
{'testcase_name': 'normal',
'n_classes': 1,
'epsilon': 1,
'noise_distribution': 'laplace',
'seed': 1
},
{'testcase_name': 'extreme range',
'n_classes': 5,
'epsilon': 0.1,
'noise_distribution': 'laplace',
'seed': 10
},
{'testcase_name': 'extreme range2',
'n_classes': 50,
'epsilon': 10,
'noise_distribution': 'laplace',
'seed': 100
},
])
def test_init_params(
self, n_classes, epsilon, noise_distribution, seed):
# test valid domains for each variable
clf = model.Bolton(n_classes,
epsilon,
noise_distribution,
seed
)
self.assertIsInstance(clf, model.Bolton)
@parameterized.named_parameters([
{'testcase_name': 'invalid noise',
'n_classes': 1,
'epsilon': 1,
'noise_distribution': 'not_valid',
'weights_initializer': tf.initializers.GlorotUniform(),
},
{'testcase_name': 'invalid epsilon',
'n_classes': 1,
'epsilon': -1,
'noise_distribution': 'laplace',
'weights_initializer': tf.initializers.GlorotUniform(),
},
])
def test_bad_init_params(
self, n_classes, epsilon, noise_distribution, weights_initializer):
# test invalid domains for each variable, especially noise
seed = 1
with self.assertRaises(ValueError):
clf = model.Bolton(n_classes,
epsilon,
noise_distribution,
weights_initializer,
seed
)
@parameterized.named_parameters([
{'testcase_name': 'string compile',
'n_classes': 1,
'loss': TestLoss(1, 1, 1),
'optimizer': 'adam',
'weights_initializer': tf.initializers.GlorotUniform(),
},
{'testcase_name': 'test compile',
'n_classes': 100,
'loss': TestLoss(1, 1, 1),
'optimizer': TestOptimizer(),
'weights_initializer': tf.initializers.GlorotUniform(),
},
{'testcase_name': 'invalid weights initializer',
'n_classes': 1,
'loss': TestLoss(1, 1, 1),
'optimizer': TestOptimizer(),
'weights_initializer': 'not_valid',
},
])
def test_compile(self, n_classes, loss, optimizer, weights_initializer):
# test compilation of valid tf.optimizer and tf.loss
epsilon = 1
noise_distribution = 'laplace'
with self.cached_session():
clf = model.Bolton(n_classes,
epsilon,
noise_distribution,
weights_initializer
)
clf.compile(optimizer, loss)
self.assertEqual(clf.loss, loss)
@parameterized.named_parameters([
{'testcase_name': 'Not strong loss',
'n_classes': 1,
'loss': losses.BinaryCrossentropy(),
'optimizer': 'adam',
},
{'testcase_name': 'Not valid optimizer',
'n_classes': 1,
'loss': TestLoss(1, 1, 1),
'optimizer': 'ada',
}
])
def test_bad_compile(self, n_classes, loss, optimizer):
# test compilaton of invalid tf.optimizer and non instantiated loss.
epsilon = 1
noise_distribution = 'laplace'
weights_initializer = tf.initializers.GlorotUniform()
with self.cached_session():
with self.assertRaises((ValueError, AttributeError)):
clf = model.Bolton(n_classes,
epsilon,
noise_distribution,
weights_initializer
)
clf.compile(optimizer, loss)
def _cat_dataset(n_samples, input_dim, n_classes, t='train', generator=False):
"""
Creates a categorically encoded dataset (y is categorical).
returns the specified dataset either as a static array or as a generator.
Will have evenly split samples across each output class.
Each output class will be a different point in the input space.
Args:
n_samples: number of rows
input_dim: input dimensionality
n_classes: output dimensionality
t: one of 'train', 'val', 'test'
generator: False for array, True for generator
Returns:
X as (n_samples, input_dim), Y as (n_samples, n_classes)
"""
x_stack = []
y_stack = []
for i_class in range(n_classes):
x_stack.append(
tf.constant(1*i_class, tf.float32, (n_samples, input_dim))
)
y_stack.append(
tf.constant(i_class, tf.float32, (n_samples, n_classes))
)
x_set, y_set = tf.stack(x_stack), tf.stack(y_stack)
if generator:
dataset = tf.data.Dataset.from_tensor_slices(
(x_set, y_set)
)
return dataset
return x_set, y_set
def _do_fit(n_samples,
input_dim,
n_classes,
epsilon,
generator,
batch_size,
reset_n_samples,
optimizer,
loss,
callbacks,
distribution='laplace'):
clf = model.Bolton(n_classes,
epsilon,
distribution
)
clf.compile(optimizer, loss)
if generator:
x = _cat_dataset(
n_samples,
input_dim,
n_classes,
generator=generator
)
y = None
# x = x.batch(batch_size)
x = x.shuffle(n_samples//2)
batch_size = None
else:
x, y = _cat_dataset(n_samples, input_dim, n_classes, generator=generator)
if reset_n_samples:
n_samples = None
if callbacks is not None:
callbacks = [callbacks]
clf.fit(x,
y,
batch_size=batch_size,
n_samples=n_samples,
callbacks=callbacks
)
return clf
class TestCallback(tf.keras.callbacks.Callback):
pass
class FitTests(keras_parameterized.TestCase):
"""Test cases for keras model fitting"""
# @test_util.run_all_in_graph_and_eager_modes
@parameterized.named_parameters([
{'testcase_name': 'iterator fit',
'generator': False,
'reset_n_samples': True,
'callbacks': None
},
{'testcase_name': 'iterator fit no samples',
'generator': False,
'reset_n_samples': True,
'callbacks': None
},
{'testcase_name': 'generator fit',
'generator': True,
'reset_n_samples': False,
'callbacks': None
},
{'testcase_name': 'with callbacks',
'generator': True,
'reset_n_samples': False,
'callbacks': TestCallback()
},
])
def test_fit(self, generator, reset_n_samples, callbacks):
loss = TestLoss(1, 1, 1)
optimizer = TestOptimizer()
n_classes = 2
input_dim = 5
epsilon = 1
batch_size = 1
n_samples = 10
clf = _do_fit(n_samples, input_dim, n_classes, epsilon, generator, batch_size,
reset_n_samples, optimizer, loss, callbacks)
self.assertEqual(hasattr(clf, '_layers'), True)
@parameterized.named_parameters([
{'testcase_name': 'generator fit',
'generator': True,
'reset_n_samples': False,
'callbacks': None
},
])
def test_fit_gen(self, generator, reset_n_samples, callbacks):
loss = TestLoss(1, 1, 1)
optimizer = TestOptimizer()
n_classes = 2
input_dim = 5
epsilon = 1
batch_size = 1
n_samples = 10
clf = model.Bolton(n_classes,
epsilon
)
clf.compile(optimizer, loss)
x = _cat_dataset(
n_samples,
input_dim,
n_classes,
generator=generator
)
x = x.batch(batch_size)
x = x.shuffle(n_samples // 2)
clf.fit_generator(x, n_samples=n_samples)
self.assertEqual(hasattr(clf, '_layers'), True)
@parameterized.named_parameters([
{'testcase_name': 'iterator no n_samples',
'generator': True,
'reset_n_samples': True,
'distribution': 'laplace'
},
{'testcase_name': 'invalid distribution',
'generator': True,
'reset_n_samples': True,
'distribution': 'not_valid'
},
])
def test_bad_fit(self, generator, reset_n_samples, distribution):
with self.assertRaises(ValueError):
loss = TestLoss(1, 1, 1)
optimizer = TestOptimizer()
n_classes = 2
input_dim = 5
epsilon = 1
batch_size = 1
n_samples = 10
_do_fit(n_samples, input_dim, n_classes, epsilon, generator, batch_size,
reset_n_samples, optimizer, loss, None, distribution)
@parameterized.named_parameters([
{'testcase_name': 'None class_weights',
'class_weights': None,
'class_counts': None,
'num_classes': None,
'result': 1},
{'testcase_name': 'class weights array',
'class_weights': [1, 1],
'class_counts': [1, 1],
'num_classes': 2,
'result': [1, 1]},
{'testcase_name': 'class weights balanced',
'class_weights': 'balanced',
'class_counts': [1, 1],
'num_classes': 2,
'result': [1, 1]},
])
def test_class_calculate(self,
class_weights,
class_counts,
num_classes,
result
):
clf = model.Bolton(1, 1)
expected = clf.calculate_class_weights(class_weights,
class_counts,
num_classes
)
if hasattr(expected, 'numpy'):
expected = expected.numpy()
self.assertAllEqual(
expected,
result
)
@parameterized.named_parameters([
{'testcase_name': 'class weight not valid str',
'class_weights': 'not_valid',
'class_counts': 1,
'num_classes': 1,
'err_msg': "Detected string class_weights with value: not_valid"},
{'testcase_name': 'no class counts',
'class_weights': 'balanced',
'class_counts': None,
'num_classes': 1,
'err_msg':
"Class counts must be provided if using class_weights=balanced"},
{'testcase_name': 'no num classes',
'class_weights': 'balanced',
'class_counts': [1],
'num_classes': None,
'err_msg':
'num_classes must be provided if using class_weights=balanced'},
{'testcase_name': 'class counts not array',
'class_weights': 'balanced',
'class_counts': 1,
'num_classes': None,
'err_msg': 'class counts must be a 1D array.'},
{'testcase_name': 'class counts array, no num classes',
'class_weights': [1],
'class_counts': None,
'num_classes': None,
'err_msg': "You must pass a value for num_classes if"
"creating an array of class_weights"},
{'testcase_name': 'class counts array, improper shape',
'class_weights': [[1], [1]],
'class_counts': None,
'num_classes': 2,
'err_msg': "Detected class_weights shape"},
{'testcase_name': 'class counts array, wrong number classes',
'class_weights': [1, 1, 1],
'class_counts': None,
'num_classes': 2,
'err_msg': "Detected array length:"},
])
def test_class_errors(self,
class_weights,
class_counts,
num_classes,
err_msg):
clf = model.Bolton(1, 1)
with self.assertRaisesRegexp(ValueError, err_msg):
expected = clf.calculate_class_weights(class_weights,
class_counts,
num_classes
)
if __name__ == '__main__':
tf.test.main()