forked from 626_privacy/tensorflow_privacy
168 lines
6.3 KiB
Python
168 lines
6.3 KiB
Python
|
# Copyright 2019, The TensorFlow Authors.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Training a CNN on MNIST with Keras and the DP SGD optimizer.
|
||
|
|
||
|
**************************** PLEASE READ ME ************************************
|
||
|
|
||
|
A modification to Keras needed for this tutorial to work as it is currently
|
||
|
written is *being* pushed. While this modification is in the works, you can
|
||
|
make this tutorial work by making the following change to the TensorFlow source
|
||
|
code (disabling the reduction of the loss used to compile a model):
|
||
|
|
||
|
Diff for file: tensorflow/python/keras/engine/training_utils.py
|
||
|
|
||
|
```
|
||
|
+ from tensorflow.python.ops.losses import losses_impl
|
||
|
|
||
|
def get_loss_function():
|
||
|
|
||
|
...
|
||
|
|
||
|
- return losses.LossFunctionWrapper(loss_fn, name=loss_fn.__name__)
|
||
|
+ return losses.LossFunctionWrapper(loss_fn,
|
||
|
+ name=loss_fn.__name__,
|
||
|
+ reduction=losses_impl.Reduction.NONE)
|
||
|
```
|
||
|
|
||
|
This allows the DP-SGD optimizer to have access to the loss defined per
|
||
|
example rather than the mean of the loss for the entire minibatch. This is
|
||
|
needed to compute gradients for each microbatch contained in a minibatch.
|
||
|
|
||
|
**************************** END OF PLEASE READ ME *****************************
|
||
|
|
||
|
"""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from privacy.analysis.rdp_accountant import compute_rdp
|
||
|
from privacy.analysis.rdp_accountant import get_privacy_spent
|
||
|
from privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer
|
||
|
from privacy.optimizers.gaussian_query import GaussianAverageQuery
|
||
|
|
||
|
tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||
|
'train with vanilla SGD.')
|
||
|
tf.flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
|
||
|
tf.flags.DEFINE_float('noise_multiplier', 1.1,
|
||
|
'Ratio of the standard deviation to the clipping norm')
|
||
|
tf.flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
||
|
tf.flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||
|
tf.flags.DEFINE_integer('epochs', 60, 'Number of epochs')
|
||
|
tf.flags.DEFINE_integer('microbatches', 250, 'Number of microbatches '
|
||
|
'(must evenly divide batch_size)')
|
||
|
tf.flags.DEFINE_string('model_dir', None, 'Model directory')
|
||
|
|
||
|
FLAGS = tf.flags.FLAGS
|
||
|
|
||
|
|
||
|
def load_mnist():
|
||
|
"""Loads MNIST and preprocesses to combine training and validation data."""
|
||
|
train, test = tf.keras.datasets.mnist.load_data()
|
||
|
train_data, train_labels = train
|
||
|
test_data, test_labels = test
|
||
|
|
||
|
train_data = np.array(train_data, dtype=np.float32) / 255
|
||
|
test_data = np.array(test_data, dtype=np.float32) / 255
|
||
|
|
||
|
train_data = train_data.reshape(train_data.shape[0], 28, 28, 1)
|
||
|
test_data = test_data.reshape(test_data.shape[0], 28, 28, 1)
|
||
|
|
||
|
train_labels = np.array(train_labels, dtype=np.int32)
|
||
|
test_labels = np.array(test_labels, dtype=np.int32)
|
||
|
|
||
|
train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10)
|
||
|
test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10)
|
||
|
|
||
|
assert train_data.min() == 0.
|
||
|
assert train_data.max() == 1.
|
||
|
assert test_data.min() == 0.
|
||
|
assert test_data.max() == 1.
|
||
|
|
||
|
return train_data, train_labels, test_data, test_labels
|
||
|
|
||
|
|
||
|
def main(unused_argv):
|
||
|
tf.logging.set_verbosity(tf.logging.INFO)
|
||
|
if FLAGS.batch_size % FLAGS.microbatches != 0:
|
||
|
raise ValueError('Number of microbatches should divide evenly batch_size')
|
||
|
|
||
|
# Load training and test data.
|
||
|
train_data, train_labels, test_data, test_labels = load_mnist()
|
||
|
|
||
|
# Define a sequential Keras model
|
||
|
model = tf.keras.Sequential([
|
||
|
tf.keras.layers.Conv2D(16, 8,
|
||
|
strides=2,
|
||
|
padding='same',
|
||
|
activation='relu',
|
||
|
input_shape=(28, 28, 1)),
|
||
|
tf.keras.layers.MaxPool2D(2, 1),
|
||
|
tf.keras.layers.Conv2D(32, 4,
|
||
|
strides=2,
|
||
|
padding='valid',
|
||
|
activation='relu'),
|
||
|
tf.keras.layers.MaxPool2D(2, 1),
|
||
|
tf.keras.layers.Flatten(),
|
||
|
tf.keras.layers.Dense(32, activation='relu'),
|
||
|
tf.keras.layers.Dense(10)
|
||
|
])
|
||
|
|
||
|
if FLAGS.dpsgd:
|
||
|
dp_average_query = GaussianAverageQuery(
|
||
|
FLAGS.l2_norm_clip,
|
||
|
FLAGS.l2_norm_clip * FLAGS.noise_multiplier,
|
||
|
FLAGS.microbatches)
|
||
|
optimizer = DPGradientDescentOptimizer(
|
||
|
dp_average_query,
|
||
|
FLAGS.microbatches,
|
||
|
learning_rate=FLAGS.learning_rate,
|
||
|
unroll_microbatches=True)
|
||
|
else:
|
||
|
optimizer = tf.train.GradientDescentOptimizer(
|
||
|
learning_rate=FLAGS.learning_rate)
|
||
|
|
||
|
def keras_loss_fn(labels, logits):
|
||
|
"""This removes the mandatory named arguments for this loss fn."""
|
||
|
return tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels,
|
||
|
logits=logits)
|
||
|
|
||
|
# Compile model with Keras
|
||
|
model.compile(optimizer=optimizer, loss=keras_loss_fn, metrics=['accuracy'])
|
||
|
|
||
|
# Train model with Keras
|
||
|
model.fit(train_data, train_labels,
|
||
|
epochs=FLAGS.epochs,
|
||
|
validation_data=(test_data, test_labels),
|
||
|
batch_size=FLAGS.batch_size)
|
||
|
|
||
|
# Compute the privacy budget expended.
|
||
|
if FLAGS.noise_multiplier == 0.0:
|
||
|
print('Trained with vanilla non-private SGD optimizer')
|
||
|
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
|
||
|
sampling_probability = FLAGS.batch_size / 60000
|
||
|
rdp = compute_rdp(q=sampling_probability,
|
||
|
noise_multiplier=FLAGS.noise_multiplier,
|
||
|
steps=(FLAGS.epochs * 60000 // FLAGS.batch_size),
|
||
|
orders=orders)
|
||
|
# Delta is set to 1e-5 because MNIST has 60000 training points.
|
||
|
eps = get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
|
||
|
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
tf.app.run()
|