forked from 626_privacy/tensorflow_privacy
105 lines
3.9 KiB
Python
105 lines
3.9 KiB
Python
|
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from differential_privacy.multiple_teachers import deep_cnn
|
||
|
from differential_privacy.multiple_teachers import input
|
||
|
from differential_privacy.multiple_teachers import metrics
|
||
|
|
||
|
|
||
|
tf.flags.DEFINE_string('dataset', 'svhn', 'The name of the dataset to use')
|
||
|
tf.flags.DEFINE_integer('nb_labels', 10, 'Number of output classes')
|
||
|
|
||
|
tf.flags.DEFINE_string('data_dir','/tmp','Temporary storage')
|
||
|
tf.flags.DEFINE_string('train_dir','/tmp/train_dir',
|
||
|
'Where model ckpt are saved')
|
||
|
|
||
|
tf.flags.DEFINE_integer('max_steps', 3000, 'Number of training steps to run.')
|
||
|
tf.flags.DEFINE_integer('nb_teachers', 50, 'Teachers in the ensemble.')
|
||
|
tf.flags.DEFINE_integer('teacher_id', 0, 'ID of teacher being trained.')
|
||
|
|
||
|
tf.flags.DEFINE_boolean('deeper', False, 'Activate deeper CNN model')
|
||
|
|
||
|
FLAGS = tf.flags.FLAGS
|
||
|
|
||
|
|
||
|
def train_teacher(dataset, nb_teachers, teacher_id):
|
||
|
"""
|
||
|
This function trains a teacher (teacher id) among an ensemble of nb_teachers
|
||
|
models for the dataset specified.
|
||
|
:param dataset: string corresponding to dataset (svhn, cifar10)
|
||
|
:param nb_teachers: total number of teachers in the ensemble
|
||
|
:param teacher_id: id of the teacher being trained
|
||
|
:return: True if everything went well
|
||
|
"""
|
||
|
# If working directories do not exist, create them
|
||
|
assert input.create_dir_if_needed(FLAGS.data_dir)
|
||
|
assert input.create_dir_if_needed(FLAGS.train_dir)
|
||
|
|
||
|
# Load the dataset
|
||
|
if dataset == 'svhn':
|
||
|
train_data,train_labels,test_data,test_labels = input.ld_svhn(extended=True)
|
||
|
elif dataset == 'cifar10':
|
||
|
train_data, train_labels, test_data, test_labels = input.ld_cifar10()
|
||
|
elif dataset == 'mnist':
|
||
|
train_data, train_labels, test_data, test_labels = input.ld_mnist()
|
||
|
else:
|
||
|
print("Check value of dataset flag")
|
||
|
return False
|
||
|
|
||
|
# Retrieve subset of data for this teacher
|
||
|
data, labels = input.partition_dataset(train_data,
|
||
|
train_labels,
|
||
|
nb_teachers,
|
||
|
teacher_id)
|
||
|
|
||
|
print("Length of training data: " + str(len(labels)))
|
||
|
|
||
|
# Define teacher checkpoint filename and full path
|
||
|
if FLAGS.deeper:
|
||
|
filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '_deep.ckpt'
|
||
|
else:
|
||
|
filename = str(nb_teachers) + '_teachers_' + str(teacher_id) + '.ckpt'
|
||
|
ckpt_path = FLAGS.train_dir + '/' + str(dataset) + '_' + filename
|
||
|
|
||
|
# Perform teacher training
|
||
|
assert deep_cnn.train(data, labels, ckpt_path)
|
||
|
|
||
|
# Append final step value to checkpoint for evaluation
|
||
|
ckpt_path_final = ckpt_path + '-' + str(FLAGS.max_steps - 1)
|
||
|
|
||
|
# Retrieve teacher probability estimates on the test data
|
||
|
teacher_preds = deep_cnn.softmax_preds(test_data, ckpt_path_final)
|
||
|
|
||
|
# Compute teacher accuracy
|
||
|
precision = metrics.accuracy(teacher_preds, test_labels)
|
||
|
print('Precision of teacher after training: ' + str(precision))
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
def main(argv=None): # pylint: disable=unused-argument
|
||
|
# Make a call to train_teachers with values specified in flags
|
||
|
assert train_teacher(FLAGS.dataset, FLAGS.nb_teachers, FLAGS.teacher_id)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
tf.app.run()
|