forked from 626_privacy/tensorflow_privacy
1239 lines
40 KiB
Python
1239 lines
40 KiB
Python
|
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# =============================================================================
|
||
|
|
||
|
# -*- coding: utf-8 -*-
|
||
|
"""Differentially Private Second-Order Methods for Logistic Regression.
|
||
|
|
||
|
This script implements several algorithms for DP logistic regression and
|
||
|
tests them on various datasets. It produces plots for our upcoming paper.
|
||
|
|
||
|
Code exported from Colab. Written by Mahdi Haghifam.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# pylint: disable=invalid-name
|
||
|
# We use upper case to denote matrices and lower case for vectors.
|
||
|
# This conflicts with pylint's variable naming rules.
|
||
|
# pylint: disable=redefined-outer-name
|
||
|
# This is a script hence we have "global" variables.
|
||
|
# pylint: disable=unused-argument
|
||
|
# The update rule functions are meant to have the same signature,
|
||
|
# so cannot just remove arguments. Ideally this should have been
|
||
|
# implemented as a class, but much easier to define a function.
|
||
|
|
||
|
import math
|
||
|
import urllib.request
|
||
|
|
||
|
# from keras.utils.np_utils import to_categorical
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from sklearn import preprocessing
|
||
|
import sklearn.datasets
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
import tensorflow as tf
|
||
|
# from tensorflow import keras
|
||
|
|
||
|
|
||
|
class MyLogisticRegression:
|
||
|
"""Represents a logistic regression problem.
|
||
|
|
||
|
There is a dataset consisting of features (vectors of norm <=1)
|
||
|
and labels (+1,-1), represented as a numpy array.
|
||
|
There is also an L2 regularizer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, X, y, reg=1e-8):
|
||
|
"""Initialize the data and the regularizer.
|
||
|
|
||
|
Args:
|
||
|
X: n x d numpy array representing features
|
||
|
y: n x 1 numpy array representing labels
|
||
|
reg: L2 regularizing coefficient (to ensure solution is finite)
|
||
|
|
||
|
Data will be rescaled so that ||X[i,:]|| * |y[i]| <= 1 for all i.
|
||
|
"""
|
||
|
self.reg = float(reg)
|
||
|
X = np.array(X)
|
||
|
y = np.array(y)
|
||
|
assert len(X.shape) == 2
|
||
|
assert len(y.shape) == 1
|
||
|
self.n, self.d = X.shape
|
||
|
assert y.shape[0] == self.n
|
||
|
signed_data = X * y[:, np.newaxis]
|
||
|
norm = np.linalg.norm(signed_data, axis=1)
|
||
|
scale = np.maximum(norm, np.ones_like(norm))
|
||
|
self.data = (1 / scale[:, None]) * signed_data
|
||
|
|
||
|
def loss(self, w):
|
||
|
"""Computes the loss represented by this object at w.
|
||
|
|
||
|
Args:
|
||
|
w: weight vector
|
||
|
|
||
|
Returns:
|
||
|
If X,y is the data and reg is the regularizer, then the loss is
|
||
|
(1/n)sum_i^n log(1+exp(-<w,X[i,:]*y[i]>)) + (reg/2)||w||^2
|
||
|
"""
|
||
|
data_loss = np.mean(np.log1p(np.exp(-np.dot(self.data, w))))
|
||
|
reg_loss = 0.5 * self.reg * np.linalg.norm(w)**2
|
||
|
return data_loss + reg_loss
|
||
|
|
||
|
def loss_wor(self, w):
|
||
|
"""Computes the loss represented by this object at w without regularizer.
|
||
|
|
||
|
Args:
|
||
|
w: weight vector
|
||
|
|
||
|
Returns:
|
||
|
If X,y is the data and reg is the regularizer, then the loss is
|
||
|
(1/n)sum_i^n log(1+exp(-<w,X[i,:]*y[i]>))
|
||
|
"""
|
||
|
data_loss = np.mean(np.log1p(np.exp(-np.dot(self.data, w))))
|
||
|
return data_loss
|
||
|
|
||
|
def grad(self, w):
|
||
|
"""Computes the gradient of the logistic regression at a given point w.
|
||
|
|
||
|
Args:
|
||
|
w: weight vector
|
||
|
|
||
|
Returns:
|
||
|
If X,y is the data and reg is the regularizer, then the gradient is
|
||
|
(-1/n)sum_i^n X[i,:]*y[i]/(1+exp(<w,X[i,:]*y[i]>)) + reg*w
|
||
|
"""
|
||
|
coeff_grad = -1/(1+np.exp(np.dot(self.data, w)))
|
||
|
data_grad = np.mean(self.data * coeff_grad[:, np.newaxis], axis=0)
|
||
|
return data_grad + self.reg * w
|
||
|
|
||
|
def grad_wor(self, w):
|
||
|
"""Computes the gradient of the logistic regression at a given point w.
|
||
|
|
||
|
Args:
|
||
|
w: weight vector
|
||
|
|
||
|
Returns:
|
||
|
If X,y is the data and reg is the regularizer, then the gradient is
|
||
|
(-1/n)sum_i^n X[i,:]*y[i]/(1+exp(<w,X[i,:]*y[i]>)) + reg*w
|
||
|
"""
|
||
|
coeff_grad = -1/(1+np.exp(np.dot(self.data, w)))
|
||
|
data_grad = np.mean(self.data * coeff_grad[:, np.newaxis], axis=0)
|
||
|
return data_grad
|
||
|
|
||
|
def hess(self, w):
|
||
|
"""Computes the Hessian of the logistic regression at a given point w.
|
||
|
|
||
|
Args:
|
||
|
w: weight vector
|
||
|
|
||
|
Returns:
|
||
|
The Hessian is the matrix of second derivatives.
|
||
|
If X,y is the data and reg is the regularizer, then the Hessian is
|
||
|
(1/n)sum_i^n X[i,:]*X[i,:]^T / (cosh(<w,W[i,:]*y[i]>/2)*2)^2
|
||
|
where we assume y[i]^2==1.
|
||
|
"""
|
||
|
a = np.dot(self.data, w)/2
|
||
|
coeff_hess = 1 / (np.exp(a)+np.exp(-a))**2
|
||
|
raw_hess = np.dot(self.data.T * coeff_hess, self.data)
|
||
|
return raw_hess/self.n + self.reg * np.eye(self.d)
|
||
|
|
||
|
def hess_wor(self, w):
|
||
|
"""Computes the Hessian of the logistic regression at a given point w.
|
||
|
|
||
|
Args:
|
||
|
w: weight vector
|
||
|
|
||
|
Returns:
|
||
|
The Hessian is the matrix of second derivatives.
|
||
|
If X,y is the data, then the Hessian is
|
||
|
(1/n)sum_i^n X[i,:]*X[i,:]^T / (cosh(<w,W[i,:]*y[i]>/2)*2)^2
|
||
|
where we assume y[i]^2==1.
|
||
|
"""
|
||
|
a = np.dot(self.data, w)/2
|
||
|
coeff_hess = 1 / (np.exp(a)+np.exp(-a))**2
|
||
|
raw_hess = np.dot(self.data.T * coeff_hess, self.data)
|
||
|
return raw_hess/self.n
|
||
|
|
||
|
def upperbound(self, w):
|
||
|
"""Computes tightest universal quadratic upper bound on the loss function.
|
||
|
|
||
|
log(1+exp(x))<=log(1+exp(a))+(x-a)/(1+exp(-a))+(x-a)^2*tanh(a/2)/(4*a)
|
||
|
Constant and linear terms are just first-order Taylor
|
||
|
This function gives the quadratic term (which replaces the Hessian)
|
||
|
https://twitter.com/shortstein/status/1557961202256318464
|
||
|
|
||
|
Args:
|
||
|
w: weight vector
|
||
|
|
||
|
Returns:
|
||
|
Matrix H such that for all v
|
||
|
loss(v) <= loss(w)+<grad(w),w-v> + <H(w-v),w-v>/2
|
||
|
"""
|
||
|
a = -np.dot(self.data, w) # vector of y_i<x_i,w> for i in [n]
|
||
|
# v = 0.5*np.tanh(a/2)/a
|
||
|
# But avoid 0/0 by special rule
|
||
|
v = np.divide(
|
||
|
0.5 * np.tanh(a / 2),
|
||
|
a,
|
||
|
out=(np.ones(a.shape) * 0.25),
|
||
|
where=(np.abs(a) > 1e-9))
|
||
|
H = np.dot(self.data.T * v, self.data)
|
||
|
return H / self.n + self.reg * np.eye(self.d)
|
||
|
|
||
|
def upperbound_wor(self, w):
|
||
|
"""Computes tightest quadratic upper bound on the unregularized loss.
|
||
|
|
||
|
log(1+exp(x))<=log(1+exp(a))+(x-a)/(1+exp(-a))+(x-a)^2*tanh(a/2)/(4*a)
|
||
|
Constant and linear terms are just first-order Taylor
|
||
|
This function gives the quadratic term (which replaces the Hessian)
|
||
|
https://twitter.com/shortstein/status/1557961202256318464
|
||
|
|
||
|
Args:
|
||
|
w: weight vector
|
||
|
|
||
|
Returns:
|
||
|
Matrix H such that for all v
|
||
|
loss(v) <= loss(w)+<grad(w),w-v> + <H(w-v),w-v>/2
|
||
|
"""
|
||
|
a = -np.dot(self.data, w) # vector of y_i<x_i,w> for i in [n]
|
||
|
# v = 0.5*np.tanh(a/2)/a
|
||
|
# But avoid 0/0 by special rule
|
||
|
v = np.divide(
|
||
|
0.5 * np.tanh(a / 2),
|
||
|
a,
|
||
|
out=(np.ones(a.shape) * 0.25),
|
||
|
where=(np.abs(a) > 1e-9))
|
||
|
H = np.dot(self.data.T * v, self.data)
|
||
|
return H / self.n
|
||
|
|
||
|
|
||
|
class Mydatasets:
|
||
|
"""Represents datasets we use for testing the algorithms.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def find_optimal_classifier(self, dataset, reg=1e-9):
|
||
|
"""Find the optimal weight vector for the logistic regression.
|
||
|
|
||
|
Args:
|
||
|
dataset: training dataset
|
||
|
reg: regularizer
|
||
|
|
||
|
Returns:
|
||
|
Optimal weight vector.
|
||
|
"""
|
||
|
X, y = dataset
|
||
|
model_lr = LogisticRegression(max_iter=10000, C=1/reg).fit(X, y)
|
||
|
w_opt1 = np.concatenate([model_lr.intercept_, np.squeeze(model_lr.coef_)])
|
||
|
w_opt = newton(dataset, w_opt1)
|
||
|
print("optimal weight vector norms", np.linalg.norm(w_opt))
|
||
|
return w_opt
|
||
|
|
||
|
def mnist_binary(self):
|
||
|
"""Download and extract MNIST data.
|
||
|
|
||
|
We also select only two labels for the binary classification task.
|
||
|
|
||
|
Returns:
|
||
|
Features, labels, and optimal weight vector.
|
||
|
"""
|
||
|
labels = [1, 7]
|
||
|
label0, label1 = int(labels[0]), int(labels[1])
|
||
|
mnist = tf.keras.datasets.mnist
|
||
|
(x_train, y_train), (_, _) = mnist.load_data()
|
||
|
x_train = x_train.reshape(x_train.shape[0], -1)
|
||
|
scaler = preprocessing.StandardScaler().fit(x_train)
|
||
|
x_train = scaler.transform(x_train)
|
||
|
nrm = np.linalg.norm(x_train, axis=1)
|
||
|
x_train = x_train * 1/nrm[:, None]
|
||
|
y_train = y_train.astype(float)
|
||
|
indx0 = np.nonzero(y_train == label0)[0]
|
||
|
indx1 = np.nonzero(y_train == label1)[0]
|
||
|
y_train[indx0] = -1
|
||
|
y_train[indx1] = 1
|
||
|
indx = np.concatenate((indx0, indx1))
|
||
|
x_train = x_train[indx]
|
||
|
labels = y_train[indx]
|
||
|
dataset = x_train, labels
|
||
|
w_opt = self.find_optimal_classifier(dataset)
|
||
|
X = np.hstack((np.ones(shape=(np.shape(x_train)[0], 1)),
|
||
|
x_train)) # adding a dummy dimension for the bias term.
|
||
|
return X, labels, w_opt
|
||
|
|
||
|
def w8a_dataset(self):
|
||
|
"""w8a dataset for logistic regression.
|
||
|
"""
|
||
|
num_points = 15e3
|
||
|
w8a_url = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/w8a"
|
||
|
data_path = "./w8a"
|
||
|
urllib.request.urlretrieve(w8a_url, data_path)
|
||
|
X, labels = sklearn.datasets.load_svmlight_file(data_path)
|
||
|
X = X.toarray()
|
||
|
selected_samples = np.random.choice(len(X), int(num_points))
|
||
|
X = X[selected_samples, :]
|
||
|
labels = labels[selected_samples]
|
||
|
scaler = preprocessing.StandardScaler().fit(X)
|
||
|
X = scaler.transform(X)
|
||
|
nrm = np.linalg.norm(X, axis=1)
|
||
|
X = X * 1/nrm[:, None]
|
||
|
labels = labels.astype(float)
|
||
|
dataset = X, labels
|
||
|
w_opt = self.find_optimal_classifier(dataset)
|
||
|
X = np.hstack((np.ones(shape=(np.shape(X)[0], 1)),
|
||
|
X)) # adding a dummy dimension for the bias term.
|
||
|
return X, labels, w_opt
|
||
|
|
||
|
def a1a_dataset(self):
|
||
|
"""Loads a1a dataset for logistic regression.
|
||
|
"""
|
||
|
a1a_url = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a1a"
|
||
|
data_path = "./a1a"
|
||
|
urllib.request.urlretrieve(a1a_url, data_path)
|
||
|
X, labels = sklearn.datasets.load_svmlight_file(data_path)
|
||
|
X = X.toarray()
|
||
|
scaler = preprocessing.StandardScaler().fit(X)
|
||
|
X = scaler.transform(X)
|
||
|
nrm = np.linalg.norm(X, axis=1)
|
||
|
X = X * 1/nrm[:, None]
|
||
|
labels = labels.astype(float)
|
||
|
dataset = X, labels
|
||
|
w_opt = self.find_optimal_classifier(dataset)
|
||
|
X = np.hstack((np.ones(shape=(np.shape(X)[0], 1)),
|
||
|
X)) # adding a dummy dimension for the bias term.
|
||
|
return X, labels, w_opt
|
||
|
|
||
|
def phishing(self):
|
||
|
"""phishing dataset for logistic regression.
|
||
|
"""
|
||
|
phishing_url = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/phishing"
|
||
|
data_path = "./phishing"
|
||
|
urllib.request.urlretrieve(phishing_url, data_path)
|
||
|
X, labels = sklearn.datasets.load_svmlight_file(data_path)
|
||
|
X = X.toarray()
|
||
|
scaler = preprocessing.StandardScaler().fit(X)
|
||
|
X = scaler.transform(X)
|
||
|
nrm = np.linalg.norm(X, axis=1)
|
||
|
X = X * 1/nrm[:, None]
|
||
|
labels = labels.astype(float)
|
||
|
dataset = X, labels
|
||
|
w_opt = self.find_optimal_classifier(dataset)
|
||
|
X = np.hstack((np.ones(shape=(np.shape(X)[0], 1)),
|
||
|
X)) # adding a dummy dimension for the bias term.
|
||
|
return X, labels, w_opt
|
||
|
|
||
|
def a5a_dataset(self):
|
||
|
"""a5a dataset for logistic regression.
|
||
|
"""
|
||
|
a5a_url = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a5a"
|
||
|
data_path = "./a5a"
|
||
|
urllib.request.urlretrieve(a5a_url, data_path)
|
||
|
X, labels = sklearn.datasets.load_svmlight_file(data_path)
|
||
|
X = X.toarray()
|
||
|
scaler = preprocessing.StandardScaler().fit(X)
|
||
|
X = scaler.transform(X)
|
||
|
nrm = np.linalg.norm(X, axis=1)
|
||
|
X = X * 1/nrm[:, None]
|
||
|
labels = labels.astype(float)
|
||
|
dataset = X, labels
|
||
|
w_opt = self.find_optimal_classifier(dataset)
|
||
|
X = np.hstack((np.ones(shape=(np.shape(X)[0], 1)),
|
||
|
X)) # adding a dummy dimension for the bias term.
|
||
|
return X, labels, w_opt
|
||
|
|
||
|
def a6a_dataset(self):
|
||
|
"""a6a dataset for logistic regression.
|
||
|
"""
|
||
|
a6a_url = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a5a"
|
||
|
data_path = "./a6a"
|
||
|
urllib.request.urlretrieve(a6a_url, data_path)
|
||
|
X, labels = sklearn.datasets.load_svmlight_file(data_path)
|
||
|
X = X.toarray()
|
||
|
scaler = preprocessing.StandardScaler().fit(X)
|
||
|
X = scaler.transform(X)
|
||
|
nrm = np.linalg.norm(X, axis=1)
|
||
|
X = X * 1/nrm[:, None]
|
||
|
labels = labels.astype(float)
|
||
|
dataset = X, labels
|
||
|
w_opt = self.find_optimal_classifier(dataset)
|
||
|
X = np.hstack((np.ones(shape=(np.shape(X)[0], 1)),
|
||
|
X)) # adding a dummy dimension for the bias term.
|
||
|
return X, labels, w_opt
|
||
|
|
||
|
def madelon(self):
|
||
|
"""madelon dataset for logistic regression.
|
||
|
"""
|
||
|
madelon_url = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/madelon"
|
||
|
data_path = "./madelon"
|
||
|
urllib.request.urlretrieve(madelon_url, data_path)
|
||
|
X, labels = sklearn.datasets.load_svmlight_file(data_path)
|
||
|
X = X.toarray()
|
||
|
scaler = preprocessing.StandardScaler().fit(X)
|
||
|
X = scaler.transform(X)
|
||
|
nrm = np.linalg.norm(X, axis=1)
|
||
|
X = X * 1/nrm[:, None]
|
||
|
labels = labels.astype(float)
|
||
|
dataset = X, labels
|
||
|
w_opt = self.find_optimal_classifier(dataset)
|
||
|
X = np.hstack((np.ones(shape=(np.shape(X)[0], 1)),
|
||
|
X)) # adding a dummy dimension for the bias term.
|
||
|
return X, labels, w_opt
|
||
|
|
||
|
def mushroom_dataset(self):
|
||
|
"""mushroom dataset for logistic regression.
|
||
|
"""
|
||
|
mushroom_url = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/mushrooms"
|
||
|
data_path = "./mushrooms"
|
||
|
urllib.request.urlretrieve(mushroom_url, data_path)
|
||
|
X, labels = sklearn.datasets.load_svmlight_file(data_path)
|
||
|
X = X.toarray()
|
||
|
scaler = preprocessing.StandardScaler().fit(X)
|
||
|
X = scaler.transform(X)
|
||
|
nrm = np.linalg.norm(X, axis=1)
|
||
|
X = X * 1/nrm[:, None]
|
||
|
labels = labels.astype(float)
|
||
|
dataset = X, labels
|
||
|
w_opt = self.find_optimal_classifier(dataset)
|
||
|
X = np.hstack((np.ones(shape=(np.shape(X)[0], 1)),
|
||
|
X)) # adding a dummy dimension for the bias term.
|
||
|
return X, labels, w_opt
|
||
|
|
||
|
def synthetic_data(self, n=5000, d=50, cov=None, w=None):
|
||
|
"""Generates a synthetic dataset for logistic regression.
|
||
|
|
||
|
Args:
|
||
|
n: number of samples
|
||
|
d: dimension
|
||
|
cov: covariance of the data (optional, default: identity)
|
||
|
w: true coefficient vector (optional, default:first standard basis vector)
|
||
|
|
||
|
Returns:
|
||
|
Synthetic dataset.
|
||
|
Features are unit vectors (by default uniformly random).
|
||
|
Labels are sampled from logistic distribution,
|
||
|
where argument w is the "true" solution.
|
||
|
"""
|
||
|
mean = np.zeros(d)
|
||
|
if cov is None:
|
||
|
cov = np.eye(d)
|
||
|
X_un = np.random.multivariate_normal(mean, cov, n)
|
||
|
nrm = np.linalg.norm(X_un, axis=1)
|
||
|
X = X_un * 1/nrm[:, None]
|
||
|
if w is None:
|
||
|
w = np.ones(d)
|
||
|
w[0] = 1
|
||
|
inner_prod = np.dot(X, w)
|
||
|
params = np.exp(inner_prod)/(1+np.exp(inner_prod))
|
||
|
labels = 2*np.random.binomial(1, params)-1
|
||
|
dataset = X, labels
|
||
|
w_opt = self.find_optimal_classifier(dataset)
|
||
|
X = np.hstack((np.ones(shape=(np.shape(X)[0], 1)),
|
||
|
X)) # adding a dummy dimension for the bias term.
|
||
|
return X, labels, w_opt
|
||
|
|
||
|
|
||
|
class CompareAlgs:
|
||
|
"""Class to run multiple iterative algorithms and compare the results."""
|
||
|
|
||
|
def __init__(self,
|
||
|
lr,
|
||
|
dataset,
|
||
|
optimal_w,
|
||
|
iters=10,
|
||
|
w0=None,
|
||
|
pb=None):
|
||
|
"""Initialize the problem."""
|
||
|
X, _ = dataset
|
||
|
self.w_opt = optimal_w
|
||
|
n, d = np.shape(X)
|
||
|
print("dataset is created: (number of samples, dimension)=" + str(n) + "," +
|
||
|
str(d))
|
||
|
|
||
|
if w0 is None:
|
||
|
w0_un = np.random.multivariate_normal(np.zeros(d), np.eye(d))
|
||
|
w0 = w0_un/np.linalg.norm(w0_un)
|
||
|
self.w0 = w0 # initial iterate
|
||
|
self.iters = iters
|
||
|
self.pb = pb
|
||
|
self.lr = lr
|
||
|
self.plots = [] # List of lists of iterates
|
||
|
self.names = [] # List of names
|
||
|
self.linestyles = [] # List of line styles for plotting
|
||
|
self.cutoff = 20 * np.linalg.norm(self.w_opt) + 20 * np.linalg.norm(
|
||
|
self.w0) + 10 # how do you set this value? is it problem-specific?
|
||
|
|
||
|
def add_plot(self, update_rule, name, linestyle):
|
||
|
"""Run an iterative update method & add to plot.
|
||
|
|
||
|
Args:
|
||
|
update_rule: a function that takes 4 arguments:
|
||
|
current iterate
|
||
|
LogisticRegression problem
|
||
|
index of current iterate
|
||
|
total number of iterations
|
||
|
pb = privacy budget or similar
|
||
|
name: string to display in legend
|
||
|
linestyle: line style for plot
|
||
|
"""
|
||
|
baseline = self.lr.loss_wor(self.w_opt)
|
||
|
print(name)
|
||
|
w = self.w0
|
||
|
plot = [w]
|
||
|
for i in range(self.iters):
|
||
|
w = update_rule(w, self.lr, i, self.iters, self.pb)
|
||
|
if np.linalg.norm(w) > self.cutoff:
|
||
|
w = self.w0 # Stop things exploding
|
||
|
print("Stop Things Exploding!")
|
||
|
plot.append(w)
|
||
|
print(
|
||
|
str(i) + ": ||grad||=" + str(np.linalg.norm(self.lr.grad_wor(w))) +
|
||
|
" ex_loss=" + str(self.lr.loss_wor(w) - baseline))
|
||
|
self.plots.append(plot)
|
||
|
self.names.append(name)
|
||
|
self.linestyles.append(linestyle)
|
||
|
print()
|
||
|
|
||
|
def plot_grad_norms(self, legend=True):
|
||
|
"""Plot gradient norms for each iteration.
|
||
|
"""
|
||
|
plt.clf()
|
||
|
for plot, name, ls in zip(self.plots, self.names, self.linestyles):
|
||
|
grad_norms = [np.linalg.norm(self.lr.grad_wor(w)) for w in plot]
|
||
|
plt.plot(range(self.iters+1), grad_norms, ls, label=name)
|
||
|
plt.yscale("log")
|
||
|
ymax = np.linalg.norm(self.lr.grad(self.plots[0][0]))
|
||
|
plt.ylim(top=ymax)
|
||
|
# plt.ylim((1e-3, 1e-1))
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Norm of Gradient")
|
||
|
if legend: plt.legend()
|
||
|
plt.show()
|
||
|
|
||
|
def loss_vals(self):
|
||
|
"""Outputs the loss vector for different methods.
|
||
|
"""
|
||
|
baseline = self.lr.loss_wor(self.w_opt)
|
||
|
loss_dict = {}
|
||
|
for plot, name in zip(self.plots, self.names):
|
||
|
losses = [self.lr.loss_wor(w)-baseline for w in plot]
|
||
|
loss_dict[name] = [losses]
|
||
|
return loss_dict
|
||
|
|
||
|
def gradnorm_vals(self):
|
||
|
"""Outputs the gradient norm for different methods.
|
||
|
"""
|
||
|
gradnorm_dict = {}
|
||
|
for plot, name in zip(self.plots, self.names):
|
||
|
grad_norms = [np.linalg.norm(self.lr.grad_wor(w)) for w in plot]
|
||
|
gradnorm_dict[name] = [grad_norms]
|
||
|
return gradnorm_dict
|
||
|
|
||
|
def plot_losses(self):
|
||
|
"""Plots excess loss for each iteration.
|
||
|
|
||
|
output is a dictionary where the keys are name of method and value is
|
||
|
the loss for each iteration.
|
||
|
"""
|
||
|
baseline = self.lr.loss_wor(self.w_opt)
|
||
|
plt.clf()
|
||
|
for plot, name, ls in zip(self.plots, self.names, self.linestyles):
|
||
|
losses = [self.lr.loss_wor(w)-baseline for w in plot]
|
||
|
plt.plot(range(self.iters+1), losses, ls, label=name)
|
||
|
# plt.yscale('log')
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Excess Loss")
|
||
|
plt.legend()
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
def gd_priv(w, lr, i, iters, pb):
|
||
|
"""Implementation of DP-GD.
|
||
|
|
||
|
Args:
|
||
|
w: current point
|
||
|
lr: logistic regression
|
||
|
i: iteration number
|
||
|
iters: total number of iterations
|
||
|
pb: auxillary information
|
||
|
|
||
|
Returns:
|
||
|
The next iterate.
|
||
|
"""
|
||
|
inv_lr_gd = 0.25 # We select the learning rate based on the smoothness
|
||
|
sens = 1/(lr.n*(inv_lr_gd+lr.reg)) # Sensitivity
|
||
|
rho = pb["total"] / iters # divide total privacy budget up
|
||
|
noise = np.random.normal(scale=sens/math.sqrt(2*rho), size=lr.d)
|
||
|
return w - lr.grad(w)/(inv_lr_gd+lr.reg) + noise
|
||
|
|
||
|
|
||
|
def gd_priv_backtrackingls(w, lr, i, iters, pb):
|
||
|
"""Implementation of DP-GD with back-tracking line search.
|
||
|
|
||
|
!!! this method is not private. We only use it as a baseline.
|
||
|
|
||
|
Args:
|
||
|
w: current point
|
||
|
lr: logistic regression
|
||
|
i: iteration number
|
||
|
iters: total number of iterations
|
||
|
pb: auxillary information
|
||
|
|
||
|
Returns:
|
||
|
The next iterate
|
||
|
"""
|
||
|
rho_grad = pb["total"] / iters # divide total privacy budget up
|
||
|
grad_scale = (1/lr.n)*math.sqrt(0.5/rho_grad)
|
||
|
grad_noise = np.random.normal(scale=grad_scale, size=lr.d)
|
||
|
direction = lr.grad(w)+grad_noise
|
||
|
stepsize_opt = backtracking_ls(lr, direction, w)
|
||
|
return w - stepsize_opt * direction
|
||
|
|
||
|
|
||
|
def backtracking_ls(lr, direction, w_0, alpha=0.4, beta=0.95):
|
||
|
"""Implementation of backtracking line search.
|
||
|
|
||
|
Args:
|
||
|
lr: logistic regression
|
||
|
direction: the "noisy" gradient direction
|
||
|
w_0: current point
|
||
|
alpha: tradeoff the precision and complexity of the linesearch
|
||
|
beta: tradeoff the precision and complexity of the linesearch
|
||
|
|
||
|
Returns:
|
||
|
A good stepsize
|
||
|
"""
|
||
|
t = 100
|
||
|
while lr.loss(w_0 - t * direction
|
||
|
) >= lr.loss(w_0) - t * alpha * np.dot(direction, lr.grad(w_0)):
|
||
|
t = beta * t
|
||
|
if t < 1e-10:
|
||
|
break
|
||
|
return t
|
||
|
|
||
|
|
||
|
def newton(dataset, w_opt2):
|
||
|
"""Newton update rule.
|
||
|
"""
|
||
|
X, y = dataset
|
||
|
X = np.hstack((np.ones(shape=(np.shape(X)[0], 1)), X))
|
||
|
lr = MyLogisticRegression(X, y, reg=1e-9)
|
||
|
w_opt = w_opt2
|
||
|
_, d = np.shape(X)
|
||
|
w = np.zeros(d)
|
||
|
for _ in range(30):
|
||
|
H = lr.hess(w)
|
||
|
direction = np.linalg.solve(H, lr.grad(w))
|
||
|
step_size = backtracking_ls(lr, direction, w)
|
||
|
w = w - step_size * direction
|
||
|
if lr.loss_wor(w) < lr.loss_wor(w_opt2):
|
||
|
w_opt = w
|
||
|
return w_opt
|
||
|
|
||
|
|
||
|
def newton_ur(w, lr, i, iters, pb):
|
||
|
H = lr.hess(w)
|
||
|
direction = np.linalg.solve(H, lr.grad(w))
|
||
|
step_size = backtracking_ls(lr, direction, w)
|
||
|
return w - step_size * direction
|
||
|
|
||
|
|
||
|
class DoubleNoiseMech:
|
||
|
"""Our Method: Double Noise."""
|
||
|
|
||
|
def __init__(self,
|
||
|
lr,
|
||
|
type_reg="add",
|
||
|
hyper_tuning=False,
|
||
|
curvature_info="hessian",
|
||
|
plot_eigen=False):
|
||
|
"""Initializes the algorithm.
|
||
|
|
||
|
Args:
|
||
|
lr: logistic regression problem we are solving.
|
||
|
type_reg: "add" or "clip" -- how we regularize eigenvalues.
|
||
|
hyper_tuning: do we tune the hyperparameters.
|
||
|
curvature_info: "hessian" or "ub" -- what quadratic we use.
|
||
|
plot_eigen: show eigenvalues for debugging purposes.
|
||
|
|
||
|
"""
|
||
|
self.type_reg = type_reg
|
||
|
self.hyper_tuning = hyper_tuning
|
||
|
self.curvature_info = curvature_info
|
||
|
self.plot_eigen = plot_eigen
|
||
|
if self.curvature_info == "hessian":
|
||
|
self.H = lr.hess_wor
|
||
|
elif self.curvature_info == "ub":
|
||
|
self.H = lr.upperbound_wor
|
||
|
|
||
|
def find_opt_reg_wop(self, w, lr, noisy_grad, rho_hess):
|
||
|
"""Implementation of finding the optimal lambda.
|
||
|
|
||
|
Here, we don't pay for privacy of doing it.
|
||
|
|
||
|
Args:
|
||
|
w: current point
|
||
|
lr: logistic regression problem
|
||
|
noisy_grad: the gradient estimate
|
||
|
rho_hess: the privacy budget
|
||
|
|
||
|
Returns:
|
||
|
The next iterate.
|
||
|
"""
|
||
|
increase_factor = 1.5 # at each step we increase the clipping
|
||
|
if self.type_reg == "add":
|
||
|
lambda_cur = 5e-6 # starting parameter
|
||
|
elif self.type_reg == "clip":
|
||
|
lambda_cur = 0.25/lr.n + 1e-5 # starting parameter,
|
||
|
num_noise_sample = 5 # we want to estimate expected value over the noise
|
||
|
grad_norm = np.linalg.norm(noisy_grad)
|
||
|
H = self.H(w)
|
||
|
best_loss = 1e6 # a large dummy number
|
||
|
while lambda_cur <= 0.25:
|
||
|
H = self.hess_mod(w, lambda_cur)
|
||
|
if self.type_reg == "add": # Sensitivity is different for add vs clip
|
||
|
sens2 = grad_norm * 0.25/(lr.n*lambda_cur**2 + 0.25*lambda_cur)
|
||
|
elif self.type_reg == "clip":
|
||
|
sens2 = grad_norm * 0.25/(lr.n*lambda_cur**2 - 0.25*lambda_cur)
|
||
|
loss_ = 0
|
||
|
for _ in range(num_noise_sample):
|
||
|
noise2 = np.random.normal(scale=sens2*math.sqrt(.5/rho_hess), size=lr.d)
|
||
|
loss_ = loss_ + lr.loss_wor(w - np.linalg.solve(H, noisy_grad) + noise2)
|
||
|
if loss_ < best_loss:
|
||
|
best_loss = loss_
|
||
|
lambda_star = lambda_cur
|
||
|
lambda_cur = lambda_cur * increase_factor
|
||
|
return lambda_star
|
||
|
|
||
|
def update_rule(self, w, lr, i, iters, pb):
|
||
|
"""update rule."""
|
||
|
total = pb["total"]
|
||
|
grad_frac = pb["grad_frac4"]
|
||
|
rho1 = grad_frac * total / iters # divide total privacy budget for gradient
|
||
|
rho2 = (1-grad_frac) * total / iters # divide total privacy budget
|
||
|
sc1 = (1/lr.n) * math.sqrt(0.5/rho1)
|
||
|
noise1 = np.random.normal(scale=sc1, size=lr.d)
|
||
|
noisy_grad = lr.grad(w)+noise1
|
||
|
grad_norm = np.linalg.norm(noisy_grad)
|
||
|
m = 0.25 # smoothness parameter
|
||
|
frac_trace = 0.1 # fraction of privacy budget for estimating the trace.
|
||
|
H = self.H(w)
|
||
|
if self.plot_eigen:
|
||
|
val, _ = np.linalg.eigh(H)
|
||
|
hist, bin_edges = np.histogram(val, bins=300, range=(0, 0.01))
|
||
|
cdf_vals = np.cumsum(hist)
|
||
|
plt.clf()
|
||
|
plt.plot(bin_edges[1:], cdf_vals)
|
||
|
plt.show()
|
||
|
if self.hyper_tuning:
|
||
|
min_eval = self.find_opt_reg_wop(w, lr, noisy_grad, rho2)
|
||
|
print("optimized min_eval", min_eval)
|
||
|
else:
|
||
|
noisy_trace = max(
|
||
|
np.trace(H) + np.random.normal(
|
||
|
scale=(0.25 / lr.n) * math.sqrt(0.5 / (frac_trace * rho2))), 0)
|
||
|
min_eval = (noisy_trace / ((lr.n)**2 *
|
||
|
(1 - frac_trace) * rho2))**(1 / 3) + 5e-4
|
||
|
print("approx min_eval ", min_eval)
|
||
|
|
||
|
H = self.hess_mod(w, min_eval, lr.reg)
|
||
|
if self.type_reg == "add": # Sensitivity is different for add vs clip
|
||
|
sens2 = grad_norm * m/(lr.n * min_eval**2 + m * min_eval)
|
||
|
elif self.type_reg == "clip":
|
||
|
sens2 = grad_norm * m / (lr.n * min_eval**2 - m * min_eval)
|
||
|
noise2 = np.random.normal(
|
||
|
scale=sens2 * math.sqrt(0.5 / ((1 - frac_trace) * rho2)), size=lr.d)
|
||
|
return w - np.linalg.solve(H, noisy_grad) + noise2
|
||
|
|
||
|
def hess_mod(self, w, min_eval, reg=1e-9):
|
||
|
if self.type_reg == "clip":
|
||
|
evals, evec = np.linalg.eigh(self.H(w))
|
||
|
# true_min = np.min(evals)
|
||
|
evals = np.maximum(evals, min_eval*np.ones(evals.shape))
|
||
|
Hclipped = np.dot(evec * evals, evec.T)
|
||
|
return Hclipped
|
||
|
elif self.type_reg == "add":
|
||
|
return self.H(w) + min_eval*np.eye(len(self.H(w)))
|
||
|
|
||
|
|
||
|
def helper_fun(datasetname, pb, num_rep=5, Tuning=False, plot_eigen=False):
|
||
|
"""This function loads the data & runs the algorithms.
|
||
|
|
||
|
Args:
|
||
|
datasetname: name of the dataset
|
||
|
pb: a dictionary with the parameters
|
||
|
num_rep: number of times we repeat the optimization for reporting average
|
||
|
Tuning: True or False exhustive search for fining the best min eigenval
|
||
|
plot_eigen: Show eigenvalues
|
||
|
|
||
|
Returns:
|
||
|
losses and gradient norms
|
||
|
"""
|
||
|
datasets = Mydatasets()
|
||
|
X, y, w_opt = getattr(datasets, datasetname)()
|
||
|
dataset = X, y
|
||
|
lr = MyLogisticRegression(X, y, reg=1e-8)
|
||
|
dnm_hess_add = DoubleNoiseMech(
|
||
|
lr,
|
||
|
type_reg="add",
|
||
|
hyper_tuning=False,
|
||
|
curvature_info="hessian",
|
||
|
plot_eigen=plot_eigen).update_rule
|
||
|
dnm_ub_add = DoubleNoiseMech(
|
||
|
lr,
|
||
|
type_reg="add",
|
||
|
hyper_tuning=False,
|
||
|
curvature_info="ub",
|
||
|
plot_eigen=plot_eigen).update_rule
|
||
|
dnm_hess_clip = DoubleNoiseMech(
|
||
|
lr,
|
||
|
type_reg="clip",
|
||
|
hyper_tuning=False,
|
||
|
curvature_info="hessian",
|
||
|
plot_eigen=plot_eigen).update_rule
|
||
|
dnm_ub_clip = DoubleNoiseMech(
|
||
|
lr,
|
||
|
type_reg="clip",
|
||
|
hyper_tuning=False,
|
||
|
curvature_info="ub",
|
||
|
plot_eigen=plot_eigen).update_rule
|
||
|
if Tuning:
|
||
|
# dnm_hess_add_ht = DoubleNoiseMech(lr,type_reg='add',
|
||
|
# hyper_tuning=True,curvature_info='hessian').update_rule
|
||
|
# dnm_ub_add_ht = DoubleNoiseMech(lr,type_reg='add',
|
||
|
# hyper_tuning=True,curvature_info='ub').update_rule
|
||
|
dnm_hess_clip_ht = DoubleNoiseMech(
|
||
|
lr,
|
||
|
type_reg="clip",
|
||
|
hyper_tuning=True,
|
||
|
curvature_info="hessian",
|
||
|
plot_eigen=plot_eigen).update_rule
|
||
|
# dnm_ub_clip_ht = DoubleNoiseMech(lr,type_reg='clip',
|
||
|
# hyper_tuning=True,curvature_info='ub').update_rule
|
||
|
c = CompareAlgs(lr, dataset, w_opt, iters=10, pb=pb)
|
||
|
for rep in range(num_rep):
|
||
|
c.add_plot(gd_priv, "DPGD", "y--")
|
||
|
c.add_plot(dnm_hess_add, "DN-Hess-add", "k-")
|
||
|
c.add_plot(dnm_ub_add, "DN-UB-add", "b-")
|
||
|
c.add_plot(dnm_hess_clip, "DN-Hess-clip", "k*-")
|
||
|
c.add_plot(dnm_ub_clip, "DN-UB-clip", "b*-")
|
||
|
c.add_plot(gd_priv_backtrackingls, "DP-GD-Oracle", "m")
|
||
|
if Tuning:
|
||
|
c.add_plot(dnm_hess_clip_ht, "DN-Hess-clip-T", "r*-")
|
||
|
# c.add_plot(dnm_hess_add_ht,"DN-Hess-add-T",'r-')
|
||
|
# c.add_plot(dnm_ub_clip_ht,"DN-UB-clip-T",'g*-')
|
||
|
# c.add_plot(dnm_ub_add_ht,"DN-UB-add-T",'g-')
|
||
|
losses_dict = c.loss_vals()
|
||
|
gradnorm_dict = c.gradnorm_vals()
|
||
|
if rep == 0:
|
||
|
losses_total = losses_dict
|
||
|
gradnorm_total = gradnorm_dict
|
||
|
else:
|
||
|
for names in losses_total:
|
||
|
losses_total[names].extend(losses_dict[names])
|
||
|
gradnorm_total[names].extend(gradnorm_dict[names])
|
||
|
return losses_total, gradnorm_total
|
||
|
|
||
|
linestyle = {
|
||
|
"DPGD": "y-",
|
||
|
"DN-Hess-add": "k+-",
|
||
|
"DN-UB-add": "b-",
|
||
|
"DN-Hess-clip": "r*-",
|
||
|
"DN-UB-clip": "g-",
|
||
|
"DP-GD-Oracle": "c-"
|
||
|
}
|
||
|
facecolor = {
|
||
|
"DPGD": "yellow",
|
||
|
"DN-Hess-add": "black",
|
||
|
"DN-UB-add": "blue",
|
||
|
"DN-Hess-clip": "red",
|
||
|
"DN-UB-clip": "green",
|
||
|
"DP-GD-Oracle": "cyan"
|
||
|
}
|
||
|
alg_plt = [
|
||
|
"DPGD",
|
||
|
"DN-Hess-add",
|
||
|
"DN-UB-add",
|
||
|
"DN-Hess-clip",
|
||
|
"DN-UB-clip",
|
||
|
"DP-GD-Oracle"
|
||
|
]
|
||
|
|
||
|
# Synthethic Data
|
||
|
|
||
|
pb = {
|
||
|
"total": 1, # Total privacy budget for zCDP
|
||
|
"min_eval4": 5e-3, # Min eigenvalue for clipping
|
||
|
"grad_frac4":
|
||
|
0.75 # Fraction of privacy budget for gradient vs matrix sensitivity
|
||
|
}
|
||
|
num_rep = 30
|
||
|
losses_total, gradnorm_total = helper_fun(
|
||
|
"synthetic_data", pb, num_rep=num_rep, Tuning=False)
|
||
|
for alg in losses_total:
|
||
|
losses = np.array(losses_total[alg])
|
||
|
gradnorm = np.array(gradnorm_total[alg])
|
||
|
loss_avg, gradnorm_avg = np.mean(losses, axis=0), np.mean(gradnorm, axis=0)
|
||
|
loss_std, gradnorm_std = np.std(
|
||
|
losses, axis=0) / np.sqrt(num_rep), np.std(
|
||
|
gradnorm, axis=0) / np.sqrt(num_rep)
|
||
|
print(
|
||
|
str(alg) + ":" + " ex_loss=" + str(loss_avg[-1]) + ", std=" +
|
||
|
str(loss_std[-1]))
|
||
|
if alg in alg_plt:
|
||
|
iters = len(loss_avg)
|
||
|
plt.figure(1)
|
||
|
plt.plot(range(iters), loss_avg, linestyle[alg], label=alg)
|
||
|
plt.fill_between(
|
||
|
range(iters),
|
||
|
loss_avg - loss_std,
|
||
|
loss_avg + loss_std,
|
||
|
facecolor=facecolor[alg])
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Excess Loss")
|
||
|
plt.savefig("synth.pdf")
|
||
|
plt.figure(2)
|
||
|
plt.plot(range(iters), gradnorm_avg, linestyle[alg], label=alg)
|
||
|
plt.yscale("log")
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Norm of Gradient")
|
||
|
plt.savefig("synth-grad.pdf")
|
||
|
|
||
|
# a5a dataset
|
||
|
|
||
|
pb = {
|
||
|
"total": 1, # Total privacy budget for zCDP
|
||
|
"min_eval4": 5e-3, # Min eigenvalue for clipping
|
||
|
"grad_frac4":
|
||
|
0.75 # Fraction of privacy budget for gradient vs matrix sensitivity
|
||
|
}
|
||
|
num_rep = 30
|
||
|
losses_total, gradnorm_total = helper_fun(
|
||
|
"a5a_dataset", pb, num_rep=num_rep, Tuning=False)
|
||
|
for alg in losses_total:
|
||
|
losses = np.array(losses_total[alg])
|
||
|
gradnorm = np.array(gradnorm_total[alg])
|
||
|
loss_avg, gradnorm_avg = np.mean(losses, axis=0), np.mean(gradnorm, axis=0)
|
||
|
loss_std, gradnorm_std = np.std(
|
||
|
losses, axis=0) / np.sqrt(num_rep), np.std(
|
||
|
gradnorm, axis=0) / np.sqrt(num_rep)
|
||
|
print(
|
||
|
str(alg) + ":" + " ex_loss=" + str(loss_avg[-1]) + ", std=" +
|
||
|
str(loss_std[-1]))
|
||
|
if alg in alg_plt:
|
||
|
iters = len(loss_avg)
|
||
|
plt.figure(3)
|
||
|
plt.plot(range(iters), loss_avg, linestyle[alg], label=alg)
|
||
|
plt.fill_between(
|
||
|
range(iters),
|
||
|
loss_avg - loss_std,
|
||
|
loss_avg + loss_std,
|
||
|
facecolor=facecolor[alg])
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Excess Loss")
|
||
|
plt.savefig("a5a.pdf")
|
||
|
plt.figure(4)
|
||
|
plt.plot(range(iters), gradnorm_avg, linestyle[alg], label=alg)
|
||
|
plt.yscale("log")
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Norm of Gradient")
|
||
|
plt.savefig("a5a-grad.pdf")
|
||
|
|
||
|
# w8a dataset
|
||
|
|
||
|
pb = {
|
||
|
"total": 1, # Total privacy budget for zCDP
|
||
|
"min_eval4": 5e-3, # Min eigenvalue for clipping
|
||
|
"grad_frac4":
|
||
|
0.75 # Fraction of privacy budget for gradient vs matrix sensitivity
|
||
|
}
|
||
|
num_rep = 30
|
||
|
losses_total, gradnorm_total = helper_fun(
|
||
|
"w8a_dataset", pb, num_rep=num_rep, Tuning=False)
|
||
|
for alg in losses_total:
|
||
|
losses = np.array(losses_total[alg])
|
||
|
gradnorm = np.array(gradnorm_total[alg])
|
||
|
loss_avg, gradnorm_avg = np.mean(losses, axis=0), np.mean(gradnorm, axis=0)
|
||
|
loss_std, gradnorm_std = np.std(
|
||
|
losses, axis=0) / np.sqrt(num_rep), np.std(
|
||
|
gradnorm, axis=0) / np.sqrt(num_rep)
|
||
|
print(
|
||
|
str(alg) + ":" + " ex_loss=" + str(loss_avg[-1]) + ", std=" +
|
||
|
str(loss_std[-1]))
|
||
|
if alg in alg_plt:
|
||
|
iters = len(loss_avg)
|
||
|
plt.figure(5)
|
||
|
plt.plot(range(iters), loss_avg, linestyle[alg], label=alg)
|
||
|
plt.fill_between(
|
||
|
range(iters),
|
||
|
loss_avg - loss_std,
|
||
|
loss_avg + loss_std,
|
||
|
facecolor=facecolor[alg])
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Excess Loss")
|
||
|
plt.savefig("w8a.pdf")
|
||
|
plt.figure(6)
|
||
|
plt.plot(range(iters), gradnorm_avg, linestyle[alg], label=alg)
|
||
|
plt.yscale("log")
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Norm of Gradient")
|
||
|
plt.savefig("w8a-grad.pdf")
|
||
|
|
||
|
# a1a dataset
|
||
|
|
||
|
pb = {
|
||
|
"total": 1, # Total privacy budget for zCDP
|
||
|
"min_eval4": 5e-3, # Min eigenvalue for clipping
|
||
|
"grad_frac4": 0.75 # Fraction of privacy budget for gradient vs matrix
|
||
|
}
|
||
|
num_rep = 30
|
||
|
losses_total, gradnorm_total = helper_fun(
|
||
|
"a1a_dataset", pb, num_rep=num_rep, Tuning=False)
|
||
|
for alg in losses_total:
|
||
|
losses = np.array(losses_total[alg])
|
||
|
gradnorm = np.array(gradnorm_total[alg])
|
||
|
loss_avg, gradnorm_avg = np.mean(losses, axis=0), np.mean(gradnorm, axis=0)
|
||
|
loss_std, gradnorm_std = np.std(
|
||
|
losses, axis=0) / np.sqrt(num_rep), np.std(
|
||
|
gradnorm, axis=0) / np.sqrt(num_rep)
|
||
|
print(
|
||
|
str(alg) + ":" + " ex_loss=" + str(loss_avg[-1]) + ", std=" +
|
||
|
str(loss_std[-1]))
|
||
|
if alg in alg_plt:
|
||
|
iters = len(loss_avg)
|
||
|
plt.figure(7)
|
||
|
plt.plot(range(iters), loss_avg, linestyle[alg], label=alg)
|
||
|
plt.fill_between(
|
||
|
range(iters),
|
||
|
loss_avg - loss_std,
|
||
|
loss_avg + loss_std,
|
||
|
facecolor=facecolor[alg])
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Excess Loss")
|
||
|
plt.savefig("a1a.pdf")
|
||
|
plt.figure(8)
|
||
|
plt.plot(range(iters), gradnorm_avg, linestyle[alg], label=alg)
|
||
|
plt.yscale("log")
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Norm of Gradient")
|
||
|
plt.savefig("a1a-grad.pdf")
|
||
|
|
||
|
# mushroom dataset
|
||
|
|
||
|
pb = {
|
||
|
"total": 1, # Total privacy budget for zCDP
|
||
|
"min_eval4": 5e-3, # Min eigenvalue for clipping
|
||
|
"grad_frac4": 0.75 # Fraction of privacy budget for gradient vs matrix
|
||
|
}
|
||
|
num_rep = 30
|
||
|
losses_total, gradnorm_total = helper_fun(
|
||
|
"mushroom_dataset", pb, num_rep=num_rep, Tuning=False)
|
||
|
for alg in losses_total:
|
||
|
losses = np.array(losses_total[alg])
|
||
|
gradnorm = np.array(gradnorm_total[alg])
|
||
|
loss_avg, gradnorm_avg = np.mean(losses, axis=0), np.mean(gradnorm, axis=0)
|
||
|
loss_std, gradnorm_std = np.std(
|
||
|
losses, axis=0) / np.sqrt(num_rep), np.std(
|
||
|
gradnorm, axis=0) / np.sqrt(num_rep)
|
||
|
print(
|
||
|
str(alg) + ":" + " ex_loss=" + str(loss_avg[-1]) + ", std=" +
|
||
|
str(loss_std[-1]))
|
||
|
if alg in alg_plt:
|
||
|
iters = len(loss_avg)
|
||
|
plt.figure(9)
|
||
|
plt.plot(range(iters), loss_avg, linestyle[alg], label=alg)
|
||
|
plt.fill_between(
|
||
|
range(iters),
|
||
|
loss_avg - loss_std,
|
||
|
loss_avg + loss_std,
|
||
|
facecolor=facecolor[alg])
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Excess Loss")
|
||
|
plt.savefig("mushroom.pdf")
|
||
|
plt.figure(10)
|
||
|
plt.plot(range(iters), gradnorm_avg, linestyle[alg], label=alg)
|
||
|
plt.yscale("log")
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Norm of Gradient")
|
||
|
plt.savefig("mushroom-grad.pdf")
|
||
|
|
||
|
# MNIST
|
||
|
|
||
|
pb = {
|
||
|
"total": 1, # Total privacy budget for zCDP
|
||
|
"min_eval4": 5e-3, # Min eigenvalue for clipping
|
||
|
"grad_frac4": 0.75 # Fraction of privacy budget for gradient vs matrix
|
||
|
}
|
||
|
num_rep = 30
|
||
|
losses_total, gradnorm_total = helper_fun(
|
||
|
"mnist_binary", pb, num_rep=num_rep, Tuning=False)
|
||
|
for alg in losses_total:
|
||
|
losses = np.array(losses_total[alg])
|
||
|
gradnorm = np.array(gradnorm_total[alg])
|
||
|
loss_avg, gradnorm_avg = np.mean(losses, axis=0), np.mean(gradnorm, axis=0)
|
||
|
loss_std, gradnorm_std = np.std(
|
||
|
losses, axis=0) / np.sqrt(num_rep), np.std(
|
||
|
gradnorm, axis=0) / np.sqrt(num_rep)
|
||
|
print(
|
||
|
str(alg) + ":" + " ex_loss=" + str(loss_avg[-1]) + ", std=" +
|
||
|
str(loss_std[-1]))
|
||
|
if alg in alg_plt:
|
||
|
iters = len(loss_avg)
|
||
|
plt.figure(11)
|
||
|
plt.plot(range(iters), loss_avg, linestyle[alg], label=alg)
|
||
|
plt.fill_between(
|
||
|
range(iters),
|
||
|
loss_avg - loss_std,
|
||
|
loss_avg + loss_std,
|
||
|
facecolor=facecolor[alg])
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Excess Loss")
|
||
|
plt.savefig("mnist.pdf")
|
||
|
plt.figure(12)
|
||
|
plt.plot(range(iters), gradnorm_avg, linestyle[alg], label=alg)
|
||
|
plt.yscale("log")
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Norm of Gradient")
|
||
|
plt.savefig("mnist-grad.pdf")
|
||
|
|
||
|
# Dataset: phishing
|
||
|
|
||
|
pb = {
|
||
|
"total": 1, # Total privacy budget for zCDP
|
||
|
"min_eval4": 5e-3, # Min eigenvalue for clipping
|
||
|
"grad_frac4": 0.75 # Fraction of privacy budget for gradient vs matrix
|
||
|
}
|
||
|
num_rep = 30
|
||
|
losses_total, gradnorm_total = helper_fun(
|
||
|
"phishing", pb, num_rep=num_rep, Tuning=False)
|
||
|
for alg in losses_total:
|
||
|
losses = np.array(losses_total[alg])
|
||
|
gradnorm = np.array(gradnorm_total[alg])
|
||
|
loss_avg, gradnorm_avg = np.mean(losses, axis=0), np.mean(gradnorm, axis=0)
|
||
|
loss_std, gradnorm_std = np.std(
|
||
|
losses, axis=0) / np.sqrt(num_rep), np.std(
|
||
|
gradnorm, axis=0) / np.sqrt(num_rep)
|
||
|
print(
|
||
|
str(alg) + ":" + " ex_loss=" + str(loss_avg[-1]) + ", std=" +
|
||
|
str(loss_std[-1]))
|
||
|
if alg in alg_plt:
|
||
|
iters = len(loss_avg)
|
||
|
plt.figure(13)
|
||
|
plt.plot(range(iters), loss_avg, linestyle[alg], label=alg)
|
||
|
plt.fill_between(
|
||
|
range(iters),
|
||
|
loss_avg - loss_std,
|
||
|
loss_avg + loss_std,
|
||
|
facecolor=facecolor[alg])
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Excess Loss")
|
||
|
plt.savefig("phishing.pdf")
|
||
|
plt.figure(14)
|
||
|
plt.plot(range(iters), gradnorm_avg, linestyle[alg], label=alg)
|
||
|
plt.yscale("log")
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Norm of Gradient")
|
||
|
plt.savefig("phishing-grad.pdf")
|
||
|
|
||
|
# Dataset: Madelon
|
||
|
|
||
|
# pb = {
|
||
|
# "total": 1, # Total privacy budget for zCDP
|
||
|
# "min_eval4": 5e-3, # Min eigenvalue for clipping
|
||
|
# "grad_frac4": 0.4 # Fraction of privacy budget for gradient vs matrix
|
||
|
# }
|
||
|
# num_rep = 1
|
||
|
# losses_total,gradnorm_total = helper_fun('madelon',pb,num_rep = num_rep,
|
||
|
# Tuning=True,plot_eigen=True)
|
||
|
# for alg in losses_total.keys():
|
||
|
# losses = np.array(losses_total[alg])
|
||
|
# gradnorm = np.array(gradnorm_total[alg])
|
||
|
# loss_avg, gradnorm_avg = np.mean(losses,axis=0), np.mean(gradnorm,axis=0)
|
||
|
# loss_std, gradnorm_std = np.std(losses,axis=0)/np.sqrt(num_rep),
|
||
|
# np.std(gradnorm,axis=0)/np.sqrt(num_rep)
|
||
|
# print(str(alg)+ ':' + " ex_loss="+str(loss_avg[-1])+ ',
|
||
|
# std='+str(loss_std[-1]))
|
||
|
# if alg in alg_plt:
|
||
|
# iters = len(loss_avg)
|
||
|
# plt.figure(1)
|
||
|
# plt.plot(range(iters),loss_avg,linestyle[alg],label=alg)
|
||
|
# plt.fill_between(range(iters), loss_avg-loss_std, loss_avg+loss_std,
|
||
|
# facecolor=facecolor[alg])
|
||
|
# plt.legend()
|
||
|
# plt.xlabel("Iteration")
|
||
|
# plt.ylabel("Excess Loss")
|
||
|
# plt.savefig('madelon.pdf')
|
||
|
# plt.figure(2)
|
||
|
# plt.plot(range(iters),gradnorm_avg,linestyle[alg],label=alg)
|
||
|
# plt.yscale('log')
|
||
|
# plt.legend()
|
||
|
# plt.xlabel("Iteration")
|
||
|
# plt.ylabel("Norm of Gradient")
|
||
|
# plt.savefig('madelon-grad.pdf')
|
||
|
|
||
|
# Test) a6a Dataset
|
||
|
|
||
|
pb = {
|
||
|
"total": 1, # Total privacy budget for zCDP
|
||
|
"min_eval4": 5e-3, # Min eigenvalue for clipping
|
||
|
"grad_frac4": 0.75 # Fraction of privacy budget for gradient vs matrix
|
||
|
}
|
||
|
num_rep = 30
|
||
|
losses_total, gradnorm_total = helper_fun(
|
||
|
"a6a_dataset", pb, num_rep=num_rep, Tuning=False)
|
||
|
for alg in losses_total:
|
||
|
losses = np.array(losses_total[alg])
|
||
|
gradnorm = np.array(gradnorm_total[alg])
|
||
|
loss_avg, gradnorm_avg = np.mean(losses, axis=0), np.mean(gradnorm, axis=0)
|
||
|
loss_std, gradnorm_std = np.std(
|
||
|
losses, axis=0) / np.sqrt(num_rep), np.std(
|
||
|
gradnorm, axis=0) / np.sqrt(num_rep)
|
||
|
print(
|
||
|
str(alg) + ":" + " ex_loss=" + str(loss_avg[-1]) + ", std=" +
|
||
|
str(loss_std[-1]))
|
||
|
if alg in alg_plt:
|
||
|
iters = len(loss_avg)
|
||
|
plt.figure(15)
|
||
|
plt.plot(range(iters), loss_avg, linestyle[alg], label=alg)
|
||
|
plt.fill_between(
|
||
|
range(iters),
|
||
|
loss_avg - loss_std,
|
||
|
loss_avg + loss_std,
|
||
|
facecolor=facecolor[alg])
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Excess Loss")
|
||
|
plt.savefig("a6a.pdf")
|
||
|
plt.figure(16)
|
||
|
plt.plot(range(iters), gradnorm_avg, linestyle[alg], label=alg)
|
||
|
plt.yscale("log")
|
||
|
plt.legend()
|
||
|
plt.xlabel("Iteration")
|
||
|
plt.ylabel("Norm of Gradient")
|
||
|
plt.savefig("a6a-grad.pdf")
|