tensorflow_privacy/tutorials/mnist_dpsgd_tutorial_tpu.py

162 lines
6.2 KiB
Python
Raw Normal View History

# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train a CNN on MNIST with DP-SGD optimizer on TPUs."""
import math
import time
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
from tensorflow import estimator as tf_estimator
from tensorflow_privacy.privacy.analysis import compute_dp_sgd_privacy_lib
from tensorflow_privacy.privacy.optimizers import dp_optimizer
import mnist_dpsgd_tutorial_common as common
flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.77,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 200, 'Batch size')
flags.DEFINE_integer('cores', 2, 'Number of TPU cores')
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
flags.DEFINE_integer(
'microbatches', 100, 'Number of microbatches '
'(must evenly divide batch_size / cores)')
flags.DEFINE_string('model_dir', None, 'Model directory')
flags.DEFINE_string('master', None, 'Master')
FLAGS = flags.FLAGS
def cnn_model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""Model function for a CNN."""
# Define CNN architecture using tf.keras.layers.
logits = common.get_cnn_model(features)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(input_tensor=vector_loss)
# Configure the training op (for TRAIN mode).
if mode == tf_estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.compat.v1.train.Optimizer should be wrappable in differentially
# private counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.compat.v1.train.GradientDescentOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
# Training with TPUs requires wrapping the optimizer in a
# CrossShardOptimizer.
optimizer = tf.tpu.CrossShardOptimizer(optimizer)
global_step = tf.compat.v1.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf_estimator.tpu.TPUEstimatorSpec(
mode=mode, loss=scalar_loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode).
elif mode == tf_estimator.ModeKeys.EVAL:
def metric_fn(labels, logits):
predictions = tf.argmax(logits, 1)
return {
'accuracy':
tf.metrics.accuracy(labels=labels, predictions=predictions),
}
return tf_estimator.tpu.TPUEstimatorSpec(
mode=mode,
loss=scalar_loss,
eval_metrics=(metric_fn, {
'labels': labels,
'logits': logits,
}))
def main(unused_argv):
logging.set_verbosity(logging.INFO)
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size')
# Instantiate the tf.Estimator.
run_config = tf_estimator.tpu.RunConfig(master=FLAGS.master)
mnist_classifier = tf_estimator.tpu.TPUEstimator(
train_batch_size=FLAGS.batch_size,
eval_batch_size=FLAGS.batch_size,
model_fn=cnn_model_fn,
model_dir=FLAGS.model_dir,
config=run_config)
# Training loop.
steps_per_epoch = 60000 // FLAGS.batch_size
eval_steps_per_epoch = 10000 // FLAGS.batch_size
for epoch in range(1, FLAGS.epochs + 1):
start_time = time.time()
# Train the model for one epoch.
mnist_classifier.train(
input_fn=common.make_input_fn(
'train', FLAGS.batch_size / FLAGS.cores, tpu=True),
steps=steps_per_epoch)
end_time = time.time()
logging.info('Epoch %d time in seconds: %.2f', epoch, end_time - start_time)
# Evaluate the model and print results
eval_results = mnist_classifier.evaluate(
input_fn=common.make_input_fn(
'test', FLAGS.batch_size / FLAGS.cores, 1, tpu=True),
steps=eval_steps_per_epoch)
test_accuracy = eval_results['accuracy']
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended.
if FLAGS.dpsgd:
if FLAGS.noise_multiplier > 0.0:
# Due to the nature of Gaussian noise, the actual noise applied is
# equal to FLAGS.noise_multiplier * sqrt(number of cores).
eps, _ = compute_dp_sgd_privacy_lib.compute_dp_sgd_privacy(
60000, FLAGS.batch_size,
FLAGS.noise_multiplier * math.sqrt(FLAGS.cores), epoch, 1e-5)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
else:
print('Trained with DP-SGD but with zero noise.')
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
app.run(main)