forked from 626_privacy/tensorflow_privacy
Add a parameter to the noise function that explicitly specifies the loss reduction type.
PiperOrigin-RevId: 583507445
This commit is contained in:
parent
39c8a8c1af
commit
03db50ba94
5 changed files with 99 additions and 12 deletions
|
@ -38,6 +38,7 @@ py_test(
|
||||||
name = "gradient_clipping_utils_test",
|
name = "gradient_clipping_utils_test",
|
||||||
srcs = ["gradient_clipping_utils_test.py"],
|
srcs = ["gradient_clipping_utils_test.py"],
|
||||||
python_version = "PY3",
|
python_version = "PY3",
|
||||||
|
shard_count = 8,
|
||||||
srcs_version = "PY3",
|
srcs_version = "PY3",
|
||||||
deps = [
|
deps = [
|
||||||
":gradient_clipping_utils",
|
":gradient_clipping_utils",
|
||||||
|
|
|
@ -14,7 +14,7 @@
|
||||||
"""Utility functions that help in the computation of per-example gradient norms."""
|
"""Utility functions that help in the computation of per-example gradient norms."""
|
||||||
|
|
||||||
from collections.abc import Sequence, Set
|
from collections.abc import Sequence, Set
|
||||||
from typing import Any, Optional
|
from typing import Any, Literal, Optional
|
||||||
|
|
||||||
from absl import logging
|
from absl import logging
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
@ -145,11 +145,12 @@ def all_trainable_layers_are_registered(
|
||||||
|
|
||||||
|
|
||||||
def add_aggregate_noise(
|
def add_aggregate_noise(
|
||||||
input_model: tf.keras.Model,
|
|
||||||
clipped_grads: list[tf.Tensor],
|
clipped_grads: list[tf.Tensor],
|
||||||
batch_size: tf.Tensor,
|
batch_size: tf.Tensor,
|
||||||
l2_norm_clip: float,
|
l2_norm_clip: float,
|
||||||
noise_multiplier: float,
|
noise_multiplier: float,
|
||||||
|
loss_reduction: Optional[Literal['mean', 'sum']] = None,
|
||||||
|
loss_model: Optional[tf.keras.Model] = None,
|
||||||
) -> Sequence[tf.Tensor]:
|
) -> Sequence[tf.Tensor]:
|
||||||
"""Adds noise to a collection of clipped gradients.
|
"""Adds noise to a collection of clipped gradients.
|
||||||
|
|
||||||
|
@ -157,25 +158,53 @@ def add_aggregate_noise(
|
||||||
input model's loss function.
|
input model's loss function.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
input_model: The `tf.keras.Model` to obtain the layers from.
|
|
||||||
clipped_grads: A list of `tf.Tensor`s representing the clipped gradients.
|
clipped_grads: A list of `tf.Tensor`s representing the clipped gradients.
|
||||||
batch_size: The batch size, used for normalizing the noise, when the loss
|
batch_size: The batch size. Used for normalizing the noise when
|
||||||
reduction is AUTO or SUM_OVER_BATCH_SIZE.
|
`loss_reduction` is 'sum'.
|
||||||
l2_norm_clip: Clipping norm (max L2 norm of each gradient).
|
l2_norm_clip: Clipping norm (max L2 norm of each gradient).
|
||||||
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
noise_multiplier: Ratio of the standard deviation to the clipping norm.
|
||||||
|
loss_reduction: An string description of how the loss is reduced over
|
||||||
|
examples. Currently supports 'mean' and 'sum'. If `None`, then the
|
||||||
|
aggregation type must be inferred from `input_model.loss`.
|
||||||
|
loss_model: An optional `tf.keras.Model` used to infer the loss reduction
|
||||||
|
strategy from if `loss_reduction` is `None`.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
A list of tensors containing the clipped gradients, but with the right
|
A list of tensors containing the clipped gradients, but with the right
|
||||||
amount of Gaussian noise added to them (depending on the reduction
|
amount of Gaussian noise added to them (depending on the reduction
|
||||||
strategy of the loss function).
|
strategy of the loss function).
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If both `loss_model` and `loss_reduction` are `None` or if
|
||||||
|
they are both not `None`.
|
||||||
"""
|
"""
|
||||||
|
if loss_reduction is None and loss_model is None:
|
||||||
|
raise ValueError(
|
||||||
|
'Exactly one of `loss_reduction` and `loss_model` must be populated.'
|
||||||
|
' Instead, both arguments were `None`.'
|
||||||
|
)
|
||||||
|
if loss_reduction is not None and loss_model is not None:
|
||||||
|
raise ValueError(
|
||||||
|
'Exactly one of `loss_reduction` and `loss_model` must be populated.'
|
||||||
|
' Instead, both arguments were not `None`.'
|
||||||
|
)
|
||||||
|
|
||||||
|
if loss_reduction is None and loss_model is not None:
|
||||||
|
implicit_mean_reductions = [
|
||||||
|
tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,
|
||||||
|
tf.keras.losses.Reduction.AUTO,
|
||||||
|
]
|
||||||
|
model_reduction = loss_model.loss.reduction
|
||||||
|
loss_reduction = (
|
||||||
|
'mean' if model_reduction in implicit_mean_reductions else 'sum'
|
||||||
|
)
|
||||||
|
if model_reduction == tf.keras.losses.Reduction.AUTO:
|
||||||
|
logging.info(
|
||||||
|
'Assuming that the model loss reduction is `SUM_OVER_BATCH_SIZE`.'
|
||||||
|
)
|
||||||
|
|
||||||
scale = l2_norm_clip
|
scale = l2_norm_clip
|
||||||
if input_model.loss.reduction in [
|
if loss_reduction == 'mean':
|
||||||
tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,
|
|
||||||
tf.keras.losses.Reduction.AUTO,
|
|
||||||
]:
|
|
||||||
if input_model.loss.reduction == tf.keras.losses.Reduction.AUTO:
|
|
||||||
logging.info('Assuming that the loss reduction is `SUM_OVER_BATCH_SIZE`.')
|
|
||||||
scale /= tf.cast(batch_size, tf.float32)
|
scale /= tf.cast(batch_size, tf.float32)
|
||||||
|
|
||||||
def add_noise(g):
|
def add_noise(g):
|
||||||
|
|
|
@ -15,6 +15,7 @@
|
||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
from absl.testing import parameterized
|
from absl.testing import parameterized
|
||||||
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow_privacy.privacy.fast_gradient_clipping import gradient_clipping_utils
|
from tensorflow_privacy.privacy.fast_gradient_clipping import gradient_clipping_utils
|
||||||
|
|
||||||
|
@ -134,6 +135,60 @@ class ModelForwardPassTest(tf.test.TestCase, parameterized.TestCase):
|
||||||
self.assertAllClose(computed_outputs, true_outputs)
|
self.assertAllClose(computed_outputs, true_outputs)
|
||||||
|
|
||||||
|
|
||||||
|
class AddAggregateNoise(tf.test.TestCase, parameterized.TestCase):
|
||||||
|
|
||||||
|
@parameterized.product(
|
||||||
|
l2_norm_clip=[3.0, 5.0],
|
||||||
|
noise_multiplier=[2.0, 4.0],
|
||||||
|
batch_size=[1, 2, 10],
|
||||||
|
model_fn_reduction=[None, 'auto', 'sum_over_batch_size', 'sum'],
|
||||||
|
noise_fn_reduction=[None, 'mean', 'sum'],
|
||||||
|
)
|
||||||
|
def test_noise_is_computed_correctly(
|
||||||
|
self,
|
||||||
|
l2_norm_clip,
|
||||||
|
noise_multiplier,
|
||||||
|
batch_size,
|
||||||
|
model_fn_reduction,
|
||||||
|
noise_fn_reduction,
|
||||||
|
):
|
||||||
|
# Skip invalid combinations.
|
||||||
|
if model_fn_reduction is None and noise_fn_reduction is None:
|
||||||
|
return
|
||||||
|
if model_fn_reduction is not None and noise_fn_reduction is not None:
|
||||||
|
return
|
||||||
|
# Make an simple model container for storing the loss.
|
||||||
|
if model_fn_reduction is not None:
|
||||||
|
linear_model = tf.keras.Sequential([tf.keras.layers.Dense(1)])
|
||||||
|
linear_model.compile(
|
||||||
|
loss=tf.keras.losses.MeanSquaredError(reduction=model_fn_reduction)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
linear_model = None
|
||||||
|
# The main computation is done on a deterministic dummy vector.
|
||||||
|
num_units = 100
|
||||||
|
clipped_grads = [
|
||||||
|
tf.expand_dims(np.arange(num_units, dtype=np.float32), axis=-1)
|
||||||
|
]
|
||||||
|
noised_grads = gradient_clipping_utils.add_aggregate_noise(
|
||||||
|
clipped_grads,
|
||||||
|
batch_size,
|
||||||
|
l2_norm_clip,
|
||||||
|
noise_multiplier,
|
||||||
|
noise_fn_reduction,
|
||||||
|
linear_model,
|
||||||
|
)
|
||||||
|
# The only measure that varies is the standard deviation of the variation.
|
||||||
|
scale = (
|
||||||
|
1.0
|
||||||
|
if noise_fn_reduction == 'sum' or model_fn_reduction == 'sum'
|
||||||
|
else 1.0 / batch_size
|
||||||
|
)
|
||||||
|
computed_std = np.std(noised_grads[0] - clipped_grads[0])
|
||||||
|
expected_std = l2_norm_clip * noise_multiplier * scale
|
||||||
|
self.assertNear(computed_std, expected_std, 0.1 * expected_std)
|
||||||
|
|
||||||
|
|
||||||
class GenerateOutputsUsingCoreKerasLayers(
|
class GenerateOutputsUsingCoreKerasLayers(
|
||||||
tf.test.TestCase, parameterized.TestCase
|
tf.test.TestCase, parameterized.TestCase
|
||||||
):
|
):
|
||||||
|
|
|
@ -25,6 +25,7 @@ py_test(
|
||||||
name = "dp_keras_model_test",
|
name = "dp_keras_model_test",
|
||||||
srcs = ["dp_keras_model_test.py"],
|
srcs = ["dp_keras_model_test.py"],
|
||||||
python_version = "PY3",
|
python_version = "PY3",
|
||||||
|
shard_count = 16,
|
||||||
srcs_version = "PY3",
|
srcs_version = "PY3",
|
||||||
deps = [
|
deps = [
|
||||||
"//tensorflow_privacy/privacy/fast_gradient_clipping:layer_registry",
|
"//tensorflow_privacy/privacy/fast_gradient_clipping:layer_registry",
|
||||||
|
|
|
@ -264,11 +264,12 @@ def make_dp_model_class(cls):
|
||||||
output_metrics[_PRIVATIZED_LOSS_NAME] = clipping_loss
|
output_metrics[_PRIVATIZED_LOSS_NAME] = clipping_loss
|
||||||
if self._noise_multiplier > 0:
|
if self._noise_multiplier > 0:
|
||||||
grads = gradient_clipping_utils.add_aggregate_noise(
|
grads = gradient_clipping_utils.add_aggregate_noise(
|
||||||
self,
|
|
||||||
clipped_grads,
|
clipped_grads,
|
||||||
num_microbatches,
|
num_microbatches,
|
||||||
self._l2_norm_clip,
|
self._l2_norm_clip,
|
||||||
self._noise_multiplier,
|
self._noise_multiplier,
|
||||||
|
loss_reduction=None,
|
||||||
|
loss_model=self,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
grads = clipped_grads
|
grads = clipped_grads
|
||||||
|
|
Loading…
Reference in a new issue