diff --git a/tensorflow_privacy/privacy/analysis/rdp_accountant.py b/tensorflow_privacy/privacy/analysis/rdp_accountant.py index 721f105..6889ad5 100644 --- a/tensorflow_privacy/privacy/analysis/rdp_accountant.py +++ b/tensorflow_privacy/privacy/analysis/rdp_accountant.py @@ -77,8 +77,7 @@ def _log_sub(logx, logy): return logx def _log_sub_sign(logx, logy): - # ensure that x > y - # this function returns the stable version of log(exp(logx)-exp(logy)) if logx > logy + """Returns log(exp(logx)-exp(logy)) and its sign.""" if logx > logy: s = True mag = logx + np.log(1 - np.exp(logy - logx)) @@ -286,18 +285,19 @@ def _compute_eps(orders, rdp, delta): def _stable_inplace_diff_in_log(vec, signs, n=-1): """ This function replaces the first n-1 dimension of vec with the log of abs difference operator - Input: - - `vec` is a numpy array of floats with size larger than 'n' - - `signs` is a numpy array of bools with the same size as vec - - `n` is an optional argument in case one needs to compute partial differences - `vec` and `signs` jointly describe a vector of real numbers' sign and abs in log scale. - Output: - The first n-1 dimension of vec and signs will store the log-abs and sign of the difference. - """ - # - # And the first n-1 dimension of signs with the sign of the differences. - # the sign is assigned to True to break symmetry if the diff is 0 - # Input: + + Args: + vec: is a numpy array of floats with size larger than 'n' + signs: is a numpy array of bools with the same size as vec is an optional argument in case one needs to compute partial differences + vec and signs jointly describe a vector of real numbers' sign and abs in log scale. + + Returns: + The first n-1 dimension of vec and signs will store the log-abs and sign of the difference. + + Raises: + ValueError: If input is malformed. + """ + assert (vec.shape == signs.shape) if n < 0: n = np.max(vec.shape) - 1 @@ -306,7 +306,7 @@ def _stable_inplace_diff_in_log(vec, signs, n=-1): for j in range(0, n, 1): if signs[j] == signs[j + 1]: # When the signs are the same # if the signs are both positive, then we can just use the standard one - signs[j], vec[j] = _log_sub_sign(vec[j + 1],vec[j]) + signs[j], vec[j] = _log_sub_sign(vec[j + 1], vec[j]) # otherwise, we do that but toggle the sign if signs[j + 1] == False: signs[j] = ~signs[j] @@ -428,9 +428,7 @@ def _compute_rdp_sample_without_replacement_scalar(q, sigma, alpha): if np.isinf(alpha): return np.inf - - - if isinstance(alpha, six.integer_types): + if float(alpha).is_integer(): return _compute_rdp_sample_without_replacement_int(q, sigma, alpha) / (alpha - 1) else: # When alpha not an integer, we apply Corollary 10 of [WBK19] to interpolate the @@ -454,7 +452,7 @@ def _compute_rdp_sample_without_replacement_int(q, sigma, alpha): RDP at alpha, can be np.inf. """ - max_alpha = 100 + max_alpha = 256 assert isinstance(alpha, six.integer_types) if np.isinf(alpha): @@ -470,23 +468,28 @@ def _compute_rdp_sample_without_replacement_int(q, sigma, alpha): # Return the rdp of Gaussian mechanism return 1.0*(x)/(2.0*sigma**2) - # We need forward differences of exp(cgf) - # The following line is the numerically stable way of implementing it. - # The output is in polar form with logarithmic magnitude - deltas, signs_deltas = _get_forward_diffs(cgf, alpha) # Initialize with 1 in the log space. log_a = 0 + # Calculates the log term when alpha = 2 + log_f2m1 = func(2.0) + np.log(1 - np.exp(-func(2.0))) if alpha <= max_alpha: + # We need forward differences of exp(cgf) + # The following line is the numerically stable way of implementing it. + # The output is in polar form with logarithmic magnitude + deltas, signs_deltas = _get_forward_diffs(cgf, alpha) # Compute the bound exactly requires book keeping of O(alpha**2) for i in range(2, alpha+1): if i == 2: - s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(np.log(4) + func(2.0) + np.log(1 - np.exp(-func(2.0))),func(2.0) + np.log(2)) + s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(np.log(4) + log_f2m1, func(2.0) + np.log(2)) elif i > 2: - s = np.minimum(np.log(4) + 0.5*deltas[int(2*np.floor(i/2.0))-1]+ 0.5*deltas[int(2*np.ceil(i/2.0))-1],np.log(2)+ cgf(i - 1)) \ - + i * np.log(q) +_log_comb(alpha, i) + delta_lo = deltas[int(2*np.floor(i/2.0))-1] + delta_hi = deltas[int(2 * np.ceil(i / 2.0)) - 1] + s = np.log(4) + 0.5 * (delta_lo + delta_hi) + s = np.minimum(s, np.log(2) + cgf(i - 1)) + s += i * np.log(q) + _log_comb(alpha, i) log_a = _log_add(log_a,s) return float(log_a) else: @@ -494,7 +497,7 @@ def _compute_rdp_sample_without_replacement_int(q, sigma, alpha): for i in range(2, alpha + 1): if i == 2: s = 2 * np.log(q) + _log_comb(alpha,2) + np.minimum( - np.log(4) + func(2.0) + np.log(1 - np.exp(-func(2.0))), func(2.0) + np.log(2)) + np.log(4) + log_f2m1, func(2.0) + np.log(2)) else: s = np.log(2) + cgf(i-1) + i*np.log(q) + _log_comb(alpha, i) log_a = _log_add(log_a, s) @@ -580,3 +583,4 @@ def compute_rdp_from_ledger(ledger, orders): total_rdp += compute_rdp( sample.selection_probability, effective_z, 1, orders) return total_rdp + diff --git a/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py b/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py index ee8278b..6e2e9d2 100644 --- a/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py +++ b/tensorflow_privacy/privacy/analysis/rdp_accountant_test.py @@ -104,9 +104,9 @@ class TestGaussianMoments(parameterized.TestCase): def test_compute_rdp_sequence_without_replacement(self): rdp_vec = rdp_accountant.compute_rdp_sample_without_replacement(0.01, 2.5, 50, - [1.001, 1.5, 2.5, 5, 50, 100, np.inf]) + [1.001, 1.5, 2.5, 5, 50, 100, 256, 512, 1024, np.inf]) self.assertSequenceAlmostEqual( - rdp_vec, [0.003470,0.003470, 0.004638, 0.0087633, 0.09847, 167.766388, np.inf], + rdp_vec, [0.003470, 0.003470, 0.004638, 0.0087633, 0.098474, 167.766388, 792.838516, 1817.35871, 3865.55029, np.inf], delta=1e-5) def test_compute_rdp_sequence(self):