forked from 626_privacy/tensorflow_privacy
Internal change.
PiperOrigin-RevId: 382171367
This commit is contained in:
parent
94f03d09f3
commit
0caa10f674
5 changed files with 423 additions and 0 deletions
|
@ -0,0 +1,37 @@
|
||||||
|
# Secret Sharer Attack
|
||||||
|
|
||||||
|
A good privacy-preserving model learns from the training data, but
|
||||||
|
doesn't memorize it.
|
||||||
|
This folder contains codes for conducting the Secret Sharer attack from [this paper](https://arxiv.org/abs/1802.08232).
|
||||||
|
It is a method to test if a machine learning model memorizes its training data.
|
||||||
|
|
||||||
|
The high level idea is to insert some random sequences as “secrets” into the
|
||||||
|
training data, and then measure if the model has memorized those secrets.
|
||||||
|
If there is significant memorization, it means that there can be potential
|
||||||
|
privacy risk.
|
||||||
|
|
||||||
|
## How to Use
|
||||||
|
|
||||||
|
### Overview of the files
|
||||||
|
|
||||||
|
- `generate_secrets.py` contains the code for generating secrets.
|
||||||
|
- `exposures.py` contains code for evaluating exposures.
|
||||||
|
- `secret_sharer_example.ipynb` is an example (character-level LSTM) for using
|
||||||
|
the above code to conduct secret sharer attack.
|
||||||
|
|
||||||
|
|
||||||
|
### Contact / Feedback
|
||||||
|
|
||||||
|
Fill out this
|
||||||
|
[Google form](https://docs.google.com/forms/d/1DPwr3_OfMcqAOA6sdelTVjIZhKxMZkXvs94z16UCDa4/edit)
|
||||||
|
or reach out to us at tf-privacy@google.com and let us know how you’re using
|
||||||
|
this module. We’re keen on hearing your stories, feedback, and suggestions!
|
||||||
|
|
||||||
|
## Contributing
|
||||||
|
|
||||||
|
If you wish to add novel attacks to the attack library, please check our
|
||||||
|
[guidelines](https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/membership_inference_attack/CONTRIBUTING.md).
|
||||||
|
|
||||||
|
## Copyright
|
||||||
|
|
||||||
|
Copyright 2021 - Google LLC
|
|
@ -0,0 +1,80 @@
|
||||||
|
# Copyright 2021, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""Measuring exposure for secret sharer attack."""
|
||||||
|
|
||||||
|
from typing import Dict, List
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import skewnorm
|
||||||
|
|
||||||
|
|
||||||
|
def compute_exposure_interpolation(
|
||||||
|
perplexities: Dict[int, List[float]],
|
||||||
|
perplexities_reference: List[float]) -> Dict[int, List[float]]:
|
||||||
|
"""Get exposure using interpolation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
perplexities: a dictionary, key is number of secret repetitions,
|
||||||
|
value is a list of perplexities
|
||||||
|
perplexities_reference: a list, perplexities of the random sequences that
|
||||||
|
did not appear in the training data
|
||||||
|
Returns:
|
||||||
|
The exposure of every secret measured using interpolation (not necessarily
|
||||||
|
in the same order as the input)
|
||||||
|
"""
|
||||||
|
repetitions = list(perplexities.keys())
|
||||||
|
# Concatenate all perplexities, including those for references
|
||||||
|
perplexities_concat = np.concatenate([perplexities[r] for r in repetitions]
|
||||||
|
+ [perplexities_reference])
|
||||||
|
# Concatenate the number of repetitions for each secret
|
||||||
|
repetitions_concat = np.concatenate(
|
||||||
|
[[r] * len(perplexities[r]) for r in repetitions]
|
||||||
|
+ [[0] * len(perplexities_reference)])
|
||||||
|
|
||||||
|
# Sort the repetition list according to the corresponding perplexity
|
||||||
|
idx = np.argsort(perplexities_concat)
|
||||||
|
repetitions_concat = repetitions_concat[idx]
|
||||||
|
|
||||||
|
# In the sorted repetition list, if there are m examples with repetition 0
|
||||||
|
# (does not appear in training) in front of an example, then its rank is
|
||||||
|
# (m + 1). To get the number of examples with repetition 0 in front of
|
||||||
|
# any example, we use the cummulative sum of the indicator vecotr
|
||||||
|
# (repetitions_concat == 0).
|
||||||
|
cum_sum = np.cumsum(repetitions_concat == 0)
|
||||||
|
ranks = {r: cum_sum[repetitions_concat == r] + 1 for r in repetitions}
|
||||||
|
exposures = {r: np.log2(len(perplexities_reference)) - np.log2(ranks[r])
|
||||||
|
for r in repetitions}
|
||||||
|
return exposures
|
||||||
|
|
||||||
|
|
||||||
|
def compute_exposure_extrapolation(
|
||||||
|
perplexities: Dict[int, List[float]],
|
||||||
|
perplexities_reference: List[float]) -> Dict[int, List[float]]:
|
||||||
|
"""Get exposure using extrapolation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
perplexities: a dictionary, key is number of secret repetitions,
|
||||||
|
value is a list of perplexities
|
||||||
|
perplexities_reference: a list, perplexities of the random sequences that
|
||||||
|
did not appear in the training data
|
||||||
|
Returns:
|
||||||
|
The exposure of every secret measured using extrapolation
|
||||||
|
"""
|
||||||
|
# Fit a skew normal distribution using the perplexities of the references
|
||||||
|
snormal_param = skewnorm.fit(perplexities_reference)
|
||||||
|
|
||||||
|
# Estimate exposure using the fitted distribution
|
||||||
|
exposures = {r: -np.log2(skewnorm.cdf(perplexities[r], *snormal_param))
|
||||||
|
for r in perplexities.keys()}
|
||||||
|
return exposures
|
|
@ -0,0 +1,71 @@
|
||||||
|
# Copyright 2021, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# Lint as: python3
|
||||||
|
"""Tests for tensorflow_privacy.privacy.secret_sharer.exposures."""
|
||||||
|
|
||||||
|
from absl.testing import absltest
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import skewnorm
|
||||||
|
|
||||||
|
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.exposures import compute_exposure_extrapolation
|
||||||
|
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.exposures import compute_exposure_interpolation
|
||||||
|
|
||||||
|
|
||||||
|
class UtilsTest(absltest.TestCase):
|
||||||
|
|
||||||
|
def __init__(self, methodname):
|
||||||
|
"""Initialize the test class."""
|
||||||
|
super().__init__(methodname)
|
||||||
|
|
||||||
|
def test_exposure_interpolation(self):
|
||||||
|
"""Test exposure by interpolation."""
|
||||||
|
perplexities = {1: [0, 0.1], # smallest perplexities
|
||||||
|
2: [20.0], # largest perplexities
|
||||||
|
5: [3.5]} # rank = 4
|
||||||
|
perplexities_reference = [float(x) for x in range(1, 17)]
|
||||||
|
exposures = compute_exposure_interpolation(perplexities,
|
||||||
|
perplexities_reference)
|
||||||
|
num_perplexities_reference = len(perplexities_reference)
|
||||||
|
exposure_largest = np.log2(num_perplexities_reference)
|
||||||
|
exposure_smallest = np.log2(num_perplexities_reference) - np.log2(
|
||||||
|
num_perplexities_reference + 1)
|
||||||
|
expected_exposures = {
|
||||||
|
1: np.array([exposure_largest] * 2),
|
||||||
|
2: np.array([exposure_smallest]),
|
||||||
|
5: np.array([np.log2(num_perplexities_reference) - np.log2(4)])}
|
||||||
|
|
||||||
|
self.assertEqual(exposures.keys(), expected_exposures.keys())
|
||||||
|
for r in exposures.keys():
|
||||||
|
np.testing.assert_almost_equal(exposures[r], exposures[r])
|
||||||
|
|
||||||
|
def test_exposure_extrapolation(self):
|
||||||
|
parameters = (4, 0, 1)
|
||||||
|
perplexities = {1: skewnorm.rvs(*parameters, size=(2,)),
|
||||||
|
10: skewnorm.rvs(*parameters, size=(5,))}
|
||||||
|
perplexities_reference = skewnorm.rvs(*parameters, size=(10000,))
|
||||||
|
exposures = compute_exposure_extrapolation(perplexities,
|
||||||
|
perplexities_reference)
|
||||||
|
fitted_parameters = skewnorm.fit(perplexities_reference)
|
||||||
|
|
||||||
|
self.assertEqual(exposures.keys(), perplexities.keys())
|
||||||
|
for r in exposures.keys():
|
||||||
|
np.testing.assert_almost_equal(
|
||||||
|
exposures[r],
|
||||||
|
-np.log2(skewnorm.cdf(perplexities[r], *fitted_parameters)))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
absltest.main()
|
|
@ -0,0 +1,145 @@
|
||||||
|
# Copyright 2021, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""Generate random sequences."""
|
||||||
|
|
||||||
|
import itertools
|
||||||
|
import string
|
||||||
|
from typing import Dict, List
|
||||||
|
from dataclasses import dataclass
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def generate_random_sequences(vocab: List[str], pattern: str, n: int,
|
||||||
|
seed: int = 1) -> List[str]:
|
||||||
|
"""Generate random sequences.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vocab: a list, the vocabulary for the sequences
|
||||||
|
pattern: the pattern of the sequence. The length of the sequence will be
|
||||||
|
inferred from the pattern.
|
||||||
|
n: number of sequences to generate
|
||||||
|
seed: random seed for numpy.random
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A list of different random sequences from the given vocabulary
|
||||||
|
"""
|
||||||
|
def count_placeholder(pattern):
|
||||||
|
return sum([x[1] is not None for x in string.Formatter().parse(pattern)])
|
||||||
|
|
||||||
|
length = count_placeholder(pattern)
|
||||||
|
np.random.seed(seed)
|
||||||
|
vocab_size = len(vocab)
|
||||||
|
if vocab_size**length <= n:
|
||||||
|
# Generate all possible sequences of the length
|
||||||
|
seq = np.array(list(itertools.product(vocab, repeat=length)))
|
||||||
|
if vocab_size**length < n:
|
||||||
|
print(f'The total number of random sequences is less than n={n}.',
|
||||||
|
f'Will return {vocab_size**length} sequences only.')
|
||||||
|
n = vocab_size**length
|
||||||
|
else:
|
||||||
|
# Generate idx where each row contains the indices for one random sequence
|
||||||
|
idx = np.empty((0, length), dtype=int)
|
||||||
|
while idx.shape[0] < n:
|
||||||
|
# Generate a new set of indices
|
||||||
|
idx_new = np.random.randint(vocab_size, size=(n, length))
|
||||||
|
idx = np.concatenate([idx, idx_new], axis=0) # Add to existing indices
|
||||||
|
idx = np.unique(idx, axis=0) # Remove duplicated indices
|
||||||
|
idx = idx[:n]
|
||||||
|
seq = np.array(vocab)[idx]
|
||||||
|
# Join each row to get the sequence
|
||||||
|
seq = np.apply_along_axis(lambda x: pattern.format(*list(x)), 1, seq)
|
||||||
|
seq = seq[np.random.permutation(n)]
|
||||||
|
return list(seq)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class SecretConfig:
|
||||||
|
"""Configuration of secret for secrets sharer.
|
||||||
|
|
||||||
|
vocab: a list, the vocabulary for the secrets
|
||||||
|
pattern: the pattern of the secrets
|
||||||
|
num_repetitions: a list, number of repetitions for the secrets
|
||||||
|
num_secrets_for_repetitions: a list, number of secrets to be used for
|
||||||
|
different number of repetitions
|
||||||
|
num_references: number of references sequences, i.e. random sequences that
|
||||||
|
will not be inserted into training data
|
||||||
|
"""
|
||||||
|
vocab: List[str]
|
||||||
|
pattern: str
|
||||||
|
num_repetitions: List[int]
|
||||||
|
num_secrets_for_repetitions: List[int]
|
||||||
|
num_references: int
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Secrets:
|
||||||
|
"""Secrets for secrets sharer.
|
||||||
|
|
||||||
|
config: configuration of the secrets
|
||||||
|
secrets: a dictionary, key is the number of repetitions, value is a list of
|
||||||
|
different secrets
|
||||||
|
references: a list of references
|
||||||
|
"""
|
||||||
|
config: SecretConfig
|
||||||
|
secrets: Dict[int, List[str]]
|
||||||
|
references: List[str]
|
||||||
|
|
||||||
|
|
||||||
|
def construct_secret(secret_config: SecretConfig, seqs: List[str]) -> Secrets:
|
||||||
|
"""Construct a secret instance.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
secret_config: configuration of secret.
|
||||||
|
seqs: a list of random sequences that will be used for secrets and
|
||||||
|
references.
|
||||||
|
Returns:
|
||||||
|
a secret instance.
|
||||||
|
"""
|
||||||
|
if len(seqs) < sum(
|
||||||
|
secret_config.num_secrets_for_repetitions) + secret_config.num_references:
|
||||||
|
raise ValueError('seqs does not contain enough elements.')
|
||||||
|
secrets = {}
|
||||||
|
i = 0
|
||||||
|
for num_repetition, num_secrets in zip(
|
||||||
|
secret_config.num_repetitions, secret_config.num_secrets_for_repetitions):
|
||||||
|
secrets[num_repetition] = seqs[i:i + num_secrets]
|
||||||
|
i += num_secrets
|
||||||
|
return Secrets(config=secret_config,
|
||||||
|
secrets=secrets,
|
||||||
|
references=seqs[-secret_config.num_references:])
|
||||||
|
|
||||||
|
|
||||||
|
def generate_secrets_and_references(secret_configs: List[SecretConfig],
|
||||||
|
seed: int = 0) -> List[Secrets]:
|
||||||
|
"""Generate a list of secret instances given a list of configurations.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
secret_configs: a list of secret configurations.
|
||||||
|
seed: random seed.
|
||||||
|
Returns:
|
||||||
|
A list of secret instances.
|
||||||
|
"""
|
||||||
|
secrets = []
|
||||||
|
for i, secret_config in enumerate(secret_configs):
|
||||||
|
n = secret_config.num_references + sum(
|
||||||
|
secret_config.num_secrets_for_repetitions)
|
||||||
|
seqs = generate_random_sequences(secret_config.vocab, secret_config.pattern,
|
||||||
|
n, seed + i)
|
||||||
|
if len(seqs) < n:
|
||||||
|
raise ValueError(
|
||||||
|
f'generate_random_sequences was not able to generate {n} sequences. Need to increase vocabulary.'
|
||||||
|
)
|
||||||
|
secrets.append(construct_secret(secret_config, seqs))
|
||||||
|
return secrets
|
|
@ -0,0 +1,90 @@
|
||||||
|
# Copyright 2021, The TensorFlow Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""Tests for tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets."""
|
||||||
|
|
||||||
|
from absl.testing import absltest
|
||||||
|
|
||||||
|
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets import construct_secret
|
||||||
|
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets import generate_random_sequences
|
||||||
|
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets import generate_secrets_and_references
|
||||||
|
from tensorflow_privacy.privacy.privacy_tests.secret_sharer.generate_secrets import SecretConfig
|
||||||
|
|
||||||
|
|
||||||
|
class UtilsTest(absltest.TestCase):
|
||||||
|
|
||||||
|
def __init__(self, methodname):
|
||||||
|
"""Initialize the test class."""
|
||||||
|
super().__init__(methodname)
|
||||||
|
|
||||||
|
def test_generate_random_sequences(self):
|
||||||
|
"""Test generate_random_sequences."""
|
||||||
|
# Test when n is larger than total number of possible sequences.
|
||||||
|
seqs = generate_random_sequences(['A', 'b', 'c'], '{}+{}', 10, seed=27)
|
||||||
|
expected_seqs = ['A+c', 'c+c', 'b+b', 'A+b', 'b+c',
|
||||||
|
'c+A', 'c+b', 'A+A', 'b+A']
|
||||||
|
self.assertEqual(seqs, expected_seqs)
|
||||||
|
|
||||||
|
# Test when n is smaller than total number of possible sequences.
|
||||||
|
seqs = generate_random_sequences(list('01234'), 'prefix {}{}{}?', 8, seed=9)
|
||||||
|
expected_seqs = ['prefix 143?', 'prefix 031?', 'prefix 302?', 'prefix 042?',
|
||||||
|
'prefix 404?', 'prefix 024?', 'prefix 021?', 'prefix 403?']
|
||||||
|
self.assertEqual(seqs, expected_seqs)
|
||||||
|
|
||||||
|
def test_construct_secret(self):
|
||||||
|
secret_config = SecretConfig(vocab=None, pattern='',
|
||||||
|
num_repetitions=[1, 2, 8],
|
||||||
|
num_secrets_for_repetitions=[2, 3, 1],
|
||||||
|
num_references=3)
|
||||||
|
seqs = list('0123456789')
|
||||||
|
secrets = construct_secret(secret_config, seqs)
|
||||||
|
self.assertEqual(secrets.config, secret_config)
|
||||||
|
self.assertDictEqual(secrets.secrets, {1: ['0', '1'],
|
||||||
|
2: ['2', '3', '4'],
|
||||||
|
8: ['5']})
|
||||||
|
self.assertEqual(secrets.references, ['7', '8', '9'])
|
||||||
|
|
||||||
|
# Test when the number of elements in seqs is not enough.
|
||||||
|
seqs = list('01234567')
|
||||||
|
self.assertRaises(ValueError, construct_secret, secret_config, seqs)
|
||||||
|
|
||||||
|
def test_generate_secrets_and_references(self):
|
||||||
|
secret_configs = [
|
||||||
|
SecretConfig(vocab=['w1', 'w2', 'w3'], pattern='{} {} suf',
|
||||||
|
num_repetitions=[1, 12],
|
||||||
|
num_secrets_for_repetitions=[2, 1],
|
||||||
|
num_references=3),
|
||||||
|
SecretConfig(vocab=['W 1', 'W 2', 'W 3'], pattern='{}-{}',
|
||||||
|
num_repetitions=[1, 2, 8],
|
||||||
|
num_secrets_for_repetitions=[2, 3, 1],
|
||||||
|
num_references=3)
|
||||||
|
]
|
||||||
|
secrets = generate_secrets_and_references(secret_configs, seed=27)
|
||||||
|
self.assertEqual(secrets[0].config, secret_configs[0])
|
||||||
|
self.assertDictEqual(secrets[0].secrets, {1: ['w3 w2 suf', 'w2 w1 suf'],
|
||||||
|
12: ['w1 w1 suf']})
|
||||||
|
self.assertEqual(secrets[0].references,
|
||||||
|
['w2 w3 suf', 'w2 w2 suf', 'w3 w1 suf'])
|
||||||
|
|
||||||
|
self.assertEqual(secrets[1].config, secret_configs[1])
|
||||||
|
self.assertDictEqual(secrets[1].secrets,
|
||||||
|
{1: ['W 3-W 2', 'W 1-W 3'],
|
||||||
|
2: ['W 3-W 1', 'W 2-W 1', 'W 1-W 1'],
|
||||||
|
8: ['W 2-W 2']})
|
||||||
|
self.assertEqual(secrets[1].references,
|
||||||
|
['W 2-W 3', 'W 3-W 3', 'W 1-W 2'])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
absltest.main()
|
Loading…
Reference in a new issue