forked from 626_privacy/tensorflow_privacy
Tests for dp_keras_model.py.
PiperOrigin-RevId: 353698907
This commit is contained in:
parent
aed49d0087
commit
1860ee1c27
2 changed files with 152 additions and 0 deletions
|
@ -13,3 +13,15 @@ py_library(
|
|||
"//third_party/tensorflow/compiler/jit:xla_gpu_jit",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "dp_keras_model_test",
|
||||
srcs = ["dp_keras_model_test.py"],
|
||||
python_version = "PY3",
|
||||
deps = [
|
||||
"//third_party/py/absl/testing:parameterized",
|
||||
"//third_party/py/six",
|
||||
"//third_party/py/tensorflow",
|
||||
"//third_party/py/tensorflow_privacy/privacy/keras_models:dp_keras_model",
|
||||
],
|
||||
)
|
||||
|
|
140
tensorflow_privacy/privacy/keras_models/dp_keras_model_test.py
Normal file
140
tensorflow_privacy/privacy/keras_models/dp_keras_model_test.py
Normal file
|
@ -0,0 +1,140 @@
|
|||
# Copyright 2021, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for DP Keras Model."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.keras_models import dp_keras_model
|
||||
|
||||
|
||||
def get_data():
|
||||
# Data is for hidden weights of [3, 1] and bias of 2.
|
||||
# With mean squared loss, we expect loss = 15^2 = 225, gradients of
|
||||
# weights = [90, 120], and gradient of bias = 30.
|
||||
data = np.array([[3, 4]])
|
||||
labels = np.matmul(data, [[3], [1]]) + 2
|
||||
return data, labels
|
||||
|
||||
|
||||
class DPKerasModelTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def testBaseline(self):
|
||||
"""Tests that DPSequential works when DP-SGD has no effect."""
|
||||
train_data, train_labels = get_data()
|
||||
|
||||
# Simple linear model returns w * x + b.
|
||||
model = dp_keras_model.DPSequential(
|
||||
l2_norm_clip=1.0e9,
|
||||
noise_multiplier=0.0,
|
||||
layers=[
|
||||
tf.keras.layers.InputLayer(input_shape=(2,)),
|
||||
tf.keras.layers.Dense(
|
||||
1, kernel_initializer='zeros', bias_initializer='zeros')
|
||||
])
|
||||
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
|
||||
loss = tf.keras.losses.MeanSquaredError()
|
||||
|
||||
model.compile(optimizer=optimizer, loss=loss)
|
||||
model.fit(train_data, train_labels, epochs=1, batch_size=1)
|
||||
|
||||
model_weights = model.get_weights()
|
||||
|
||||
# Check parameters are as expected, taking into account the learning rate.
|
||||
self.assertAllClose(model_weights[0], [[0.90], [1.20]])
|
||||
self.assertAllClose(model_weights[1], [0.30])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('l2_norm_clip 10.0', 10.0),
|
||||
('l2_norm_clip 40.0', 40.0),
|
||||
('l2_norm_clip 200.0', 200.0),
|
||||
)
|
||||
def testClippingNorm(self, l2_norm_clip):
|
||||
"""Tests that clipping norm works."""
|
||||
train_data, train_labels = get_data()
|
||||
|
||||
# Simple linear model returns w * x + b.
|
||||
model = dp_keras_model.DPSequential(
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=0.0,
|
||||
layers=[
|
||||
tf.keras.layers.InputLayer(input_shape=(2,)),
|
||||
tf.keras.layers.Dense(
|
||||
1, kernel_initializer='zeros', bias_initializer='zeros')
|
||||
])
|
||||
learning_rate = 0.01
|
||||
optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
|
||||
loss = tf.keras.losses.MeanSquaredError()
|
||||
|
||||
model.compile(optimizer=optimizer, loss=loss)
|
||||
model.fit(train_data, train_labels, epochs=1, batch_size=1)
|
||||
|
||||
model_weights = model.get_weights()
|
||||
|
||||
unclipped_gradient = np.sqrt(90**2 + 120**2 + 30**2)
|
||||
scale = min(1.0, l2_norm_clip / unclipped_gradient)
|
||||
expected_weights = np.array([[90], [120]]) * scale * learning_rate
|
||||
expected_bias = np.array([30]) * scale * learning_rate
|
||||
|
||||
# Check parameters are as expected, taking into account the learning rate.
|
||||
self.assertAllClose(model_weights[0], expected_weights)
|
||||
self.assertAllClose(model_weights[1], expected_bias)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('noise_multiplier 3 2', 3.0, 2.0),
|
||||
('noise_multiplier 5 4', 5.0, 4.0),
|
||||
)
|
||||
def testNoiseMultiplier(self, l2_norm_clip, noise_multiplier):
|
||||
# The idea behind this test is to start with a model whose parameters
|
||||
# are set to zero. We then run one step of a model that produces
|
||||
# an un-noised gradient of zero, and then compute the standard deviation
|
||||
# of the resulting weights to see if it matches the expected standard
|
||||
# deviation.
|
||||
|
||||
# Data is one example of length 1000, set to zero, with label zero.
|
||||
train_data = np.zeros((1, 1000))
|
||||
train_labels = np.array([0.0])
|
||||
|
||||
learning_rate = 1.0
|
||||
optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
|
||||
loss = tf.keras.losses.MeanSquaredError()
|
||||
|
||||
# Simple linear model returns w * x + b.
|
||||
model = dp_keras_model.DPSequential(
|
||||
l2_norm_clip=l2_norm_clip,
|
||||
noise_multiplier=noise_multiplier,
|
||||
layers=[
|
||||
tf.keras.layers.InputLayer(input_shape=(1000,)),
|
||||
tf.keras.layers.Dense(
|
||||
1, kernel_initializer='zeros', bias_initializer='zeros')
|
||||
])
|
||||
model.compile(optimizer=optimizer, loss=loss)
|
||||
model.fit(train_data, train_labels, epochs=1, batch_size=1)
|
||||
|
||||
model_weights = model.get_weights()
|
||||
measured_std = np.std(model_weights[0])
|
||||
expected_std = l2_norm_clip * noise_multiplier
|
||||
|
||||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
self.assertNear(measured_std, expected_std, 0.1 * expected_std)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
Loading…
Reference in a new issue