diff --git a/privacy/bolton/losses.py b/privacy/bolton/losses.py index d4c8795..08ce089 100644 --- a/privacy/bolton/losses.py +++ b/privacy/bolton/losses.py @@ -212,12 +212,12 @@ class StrongConvexBinaryCrossentropy( """Strongly Convex BinaryCrossentropy loss using l2 weight regularization.""" def __init__(self, - reg_lambda: float, - C: float, - radius_constant: float, - from_logits: bool = True, - label_smoothing: float = 0, - reduction: str = losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, + reg_lambda, + C, + radius_constant, + from_logits=True, + label_smoothing=0, + reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, dtype=tf.float32): """ Args: diff --git a/privacy/bolton/losses_test.py b/privacy/bolton/losses_test.py index ead3adb..44a8d11 100644 --- a/privacy/bolton/losses_test.py +++ b/privacy/bolton/losses_test.py @@ -367,12 +367,13 @@ class HuberTests(keras_parameterized.TestCase): }, ]) def test_calculation(self, logits, y_true, delta, result): - """Test the call method to ensure it returns the correct value + """Test the call method to ensure it returns the correct value. - Args: - logits: unscaled output of model - y_true: label - result: correct loss calculation value + Args: + logits: unscaled output of model + y_true: label + delta: + result: correct loss calculation value """ logits = tf.Variable(logits, False, dtype=tf.float32) y_true = tf.Variable(y_true, False, dtype=tf.float32) diff --git a/privacy/bolton/models.py b/privacy/bolton/models.py index fd718d3..6bd313b 100644 --- a/privacy/bolton/models.py +++ b/privacy/bolton/models.py @@ -86,8 +86,16 @@ class BoltonModel(Model): # pylint: disable=abstract-method **kwargs): # pylint: disable=arguments-differ """See super class. Default optimizer used in Bolton method is SGD. - Missing args. - + Args: + optimizer: + loss: + metrics: + loss_weights: + sample_weight_mode: + weighted_metrics: + target_tensors: + distribute: + kernel_initializer: """ if not isinstance(loss, StrongConvexMixin): raise ValueError('loss function must be a Strongly Convex and therefore ' @@ -126,15 +134,15 @@ class BoltonModel(Model): # pylint: disable=abstract-method **kwargs): # pylint: disable=arguments-differ """Reroutes to super fit with Bolton delta-epsilon privacy requirements. - Note, inputs must be normalized s.t. ||x|| < 1. - Requirements are as follows: + Note, inputs must be normalized s.t. ||x|| < 1. + Requirements are as follows: 1. Adds noise to weights after training (output perturbation). 2. Projects weights to R after each batch 3. Limits learning rate 4. Use a strongly convex loss function (see compile) - See super implementation for more details. + See super implementation for more details. - Args: + Args: n_samples: the number of individual samples in x. epsilon: privacy parameter, which trades off between utility an privacy. See the bolton paper for more description. @@ -189,20 +197,20 @@ class BoltonModel(Model): # pylint: disable=abstract-method n_samples=None, steps_per_epoch=None, **kwargs): # pylint: disable=arguments-differ - """Fit with a generator.. - + """Fit with a generator. + This method is the same as fit except for when the passed dataset is a generator. See super method and fit for more details. - + Args: - n_samples: number of individual samples in x + generator: + class_weight: the class weights to be used. Can be a scalar or 1D tensor + whose dim == n_classes. noise_distribution: the distribution to get noise from. epsilon: privacy parameter, which trades off utility and privacy. See Bolton paper for more description. - class_weight: the class weights to be used. Can be a scalar or 1D tensor - whose dim == n_classes. - - See the super method for descriptions on the rest of the arguments. + n_samples: number of individual samples in x + steps_per_epoch: """ if class_weight is None: class_weight = self.calculate_class_weights(class_weight) @@ -242,7 +250,7 @@ class BoltonModel(Model): # pylint: disable=abstract-method the number of samples for each class num_classes: If class_weights is not None, then the number of classes. - Returns: + Returns: class_weights as 1D tensor, to be passed to model's fit method. """ # Value checking diff --git a/privacy/bolton/models_test.py b/privacy/bolton/models_test.py index 88602cf..ca87eae 100644 --- a/privacy/bolton/models_test.py +++ b/privacy/bolton/models_test.py @@ -32,10 +32,10 @@ from privacy.bolton.optimizers import Bolton class TestLoss(losses.Loss, StrongConvexMixin): """Test loss function for testing Bolton model.""" - def __init__(self, reg_lambda, C, radius_constant, name='test'): + def __init__(self, reg_lambda, C_arg, radius_constant, name='test'): super(TestLoss, self).__init__(name=name) self.reg_lambda = reg_lambda - self.C = C # pylint: disable=invalid-name + self.C = C_arg # pylint: disable=invalid-name self.radius_constant = radius_constant def radius(self): @@ -43,7 +43,7 @@ class TestLoss(losses.Loss, StrongConvexMixin): W is a convex set that forms the hypothesis space. - Returns: + Returns: radius """ return _ops.convert_to_tensor_v2(1, dtype=tf.float32) @@ -70,7 +70,7 @@ class TestLoss(losses.Loss, StrongConvexMixin): Args: class_weight: class weights used - Returns: + Returns: L """ return _ops.convert_to_tensor_v2(1, dtype=tf.float32) @@ -207,7 +207,7 @@ class InitTests(keras_parameterized.TestCase): n_outputs: number of output neurons loss: instantiated TestLoss instance optimizer: instanced TestOptimizer instance - """ + """ # test compilaton of invalid tf.optimizer and non instantiated loss. with self.cached_session(): with self.assertRaises((ValueError, AttributeError)): @@ -228,9 +228,10 @@ def _cat_dataset(n_samples, input_dim, n_classes, generator=False): input_dim: input dimensionality n_classes: output dimensionality generator: False for array, True for generator + Returns: X as (n_samples, input_dim), Y as (n_samples, n_outputs) - """ + """ x_stack = [] y_stack = [] for i_class in range(n_classes): @@ -512,7 +513,7 @@ class FitTests(keras_parameterized.TestCase): num_classes, err_msg): """Tests the BOltonModel calculate_class_weights method. - + This test passes invalid params which should raise the expected errors. Args: @@ -520,7 +521,7 @@ class FitTests(keras_parameterized.TestCase): class_counts: count of number of samples for each class num_classes: number of outputs neurons err_msg: - """ + """ clf = models.BoltonModel(1, 1) with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method clf.calculate_class_weights(class_weights, diff --git a/privacy/bolton/optimizers.py b/privacy/bolton/optimizers.py index 214757b..e7a1431 100644 --- a/privacy/bolton/optimizers.py +++ b/privacy/bolton/optimizers.py @@ -298,9 +298,9 @@ class Bolton(optimizer_v2.OptimizerV2): return self def __call__(self, - noise_distribution: str, - epsilon: float, - layers: list, + noise_distribution, + epsilon, + layers, class_weights, n_samples, batch_size diff --git a/privacy/bolton/optimizers_test.py b/privacy/bolton/optimizers_test.py index 621dbf6..c9c1f88 100644 --- a/privacy/bolton/optimizers_test.py +++ b/privacy/bolton/optimizers_test.py @@ -51,11 +51,8 @@ class TestModel(Model): # pylint: disable=abstract-method Args: n_outputs: number of output neurons - epsilon: level of privacy guarantee - noise_distribution: distribution to pull weight perturbations from - weights_initializer: initializer for weights - seed: random seed to use - dtype: data type to use for tensors + input_shape: + init_value: """ super(TestModel, self).__init__(name='bolton', dynamic=False) self.n_outputs = n_outputs @@ -71,18 +68,19 @@ class TestModel(Model): # pylint: disable=abstract-method class TestLoss(losses.Loss, StrongConvexMixin): """Test loss function for testing Bolton model.""" - def __init__(self, reg_lambda, C, radius_constant, name='test'): + def __init__(self, reg_lambda, C_arg, radius_constant, name='test'): super(TestLoss, self).__init__(name=name) self.reg_lambda = reg_lambda - self.C = C # pylint: disable=invalid-name + self.C = C_arg # pylint: disable=invalid-name self.radius_constant = radius_constant def radius(self): """Radius, R, of the hypothesis space W. - W is a convex set that forms the hypothesis space. + W is a convex set that forms the hypothesis space. - Returns: radius + Returns: + radius """ return _ops.convert_to_tensor_v2(self.radius_constant, dtype=tf.float32) @@ -105,10 +103,11 @@ class TestLoss(losses.Loss, StrongConvexMixin): def lipchitz_constant(self, class_weight): # pylint: disable=unused-argument """Lipchitz constant, L. - Args: - class_weight: class weights used + Args: + class_weight: class weights used - Returns: L + Returns: + L """ return _ops.convert_to_tensor_v2(1, dtype=tf.float32) @@ -143,7 +142,7 @@ class TestLoss(losses.Loss, StrongConvexMixin): class TestOptimizer(OptimizerV2): - """Optimizer used for testing the Bolton optimizer""" + """Optimizer used for testing the Bolton optimizer.""" def __init__(self): super(TestOptimizer, self).__init__('test') @@ -263,8 +262,12 @@ class BoltonOptimizerTest(keras_parameterized.TestCase): def test_project(self, r, shape, n_out, init_value, result): """test that a fn of Bolton optimizer is working as expected. - Missing args: - + Args: + r: + shape: + n_out: + init_value: + result: """ tf.random.set_seed(1) @tf.function @@ -451,7 +454,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase): ]) def test_not_reroute_fn(self, fn, args): """Test function is not rerouted. - + Test that a fn that should not be rerouted to the internal optimizer is in fact not rerouted. @@ -490,7 +493,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase): ]) def test_reroute_attr(self, attr): """Test a function is rerouted. - + Test that attribute of internal optimizer is correctly rerouted to the internal optimizer. @@ -509,7 +512,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase): ]) def test_attribute_error(self, attr): """Test rerouting of attributes. - + Test that attribute of internal optimizer is correctly rerouted to the internal optimizer @@ -524,7 +527,7 @@ class BoltonOptimizerTest(keras_parameterized.TestCase): class SchedulerTest(keras_parameterized.TestCase): - """GammaBeta Scheduler tests""" + """GammaBeta Scheduler tests.""" @parameterized.named_parameters([ {'testcase_name': 'not in context', @@ -533,10 +536,10 @@ class SchedulerTest(keras_parameterized.TestCase): } ]) def test_bad_call(self, err_msg): - """ test that attribute of internal optimizer is correctly rerouted to - the internal optimizer + """Test attribute of internal opt correctly rerouted to the internal opt. - Missing args + Args: + err_msg: """ scheduler = opt.GammaBetaDecreasingStep() with self.assertRaisesRegexp(Exception, err_msg): # pylint: disable=deprecated-method @@ -555,11 +558,13 @@ class SchedulerTest(keras_parameterized.TestCase): ]) def test_call(self, step, res): """Test call. - + Test that attribute of internal optimizer is correctly rerouted to the internal optimizer - Missing Args: + Args: + step: + res: """ beta = _ops.convert_to_tensor_v2(2, dtype=tf.float32) gamma = _ops.convert_to_tensor_v2(1, dtype=tf.float32)