forked from 626_privacy/tensorflow_privacy
Remove QuantileAdaptiveClipAverageQuery. Users can simply wrap QuantileAdaptiveClipSumQuery with a NormalizedQuery.
PiperOrigin-RevId: 374770867
This commit is contained in:
parent
aaf4c252a0
commit
1de7e4dde4
3 changed files with 48 additions and 158 deletions
|
@ -48,7 +48,6 @@ else:
|
|||
from tensorflow_privacy.privacy.dp_query.quantile_estimator_query import QuantileEstimatorQuery
|
||||
from tensorflow_privacy.privacy.dp_query.quantile_estimator_query import NoPrivacyQuantileEstimatorQuery
|
||||
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipSumQuery
|
||||
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipAverageQuery
|
||||
|
||||
# Estimators
|
||||
from tensorflow_privacy.privacy.estimators.dnn import DNNClassifier
|
||||
|
|
|
@ -11,7 +11,6 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Implements DPQuery interface for adaptive clip queries.
|
||||
|
||||
Instead of a fixed clipping norm specified in advance, the clipping norm is
|
||||
|
@ -31,7 +30,6 @@ import tensorflow.compat.v1 as tf
|
|||
|
||||
from tensorflow_privacy.privacy.dp_query import dp_query
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
from tensorflow_privacy.privacy.dp_query import normalized_query
|
||||
from tensorflow_privacy.privacy.dp_query import quantile_estimator_query
|
||||
|
||||
|
||||
|
@ -44,10 +42,8 @@ class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery):
|
|||
|
||||
# pylint: disable=invalid-name
|
||||
_GlobalState = collections.namedtuple(
|
||||
'_GlobalState', [
|
||||
'noise_multiplier',
|
||||
'sum_state',
|
||||
'quantile_estimator_state'])
|
||||
'_GlobalState',
|
||||
['noise_multiplier', 'sum_state', 'quantile_estimator_state'])
|
||||
|
||||
# pylint: disable=invalid-name
|
||||
_SampleState = collections.namedtuple(
|
||||
|
@ -57,15 +53,14 @@ class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery):
|
|||
_SampleParams = collections.namedtuple(
|
||||
'_SampleParams', ['sum_params', 'quantile_estimator_params'])
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
initial_l2_norm_clip,
|
||||
noise_multiplier,
|
||||
target_unclipped_quantile,
|
||||
learning_rate,
|
||||
clipped_count_stddev,
|
||||
expected_num_records,
|
||||
geometric_update=True):
|
||||
def __init__(self,
|
||||
initial_l2_norm_clip,
|
||||
noise_multiplier,
|
||||
target_unclipped_quantile,
|
||||
learning_rate,
|
||||
clipped_count_stddev,
|
||||
expected_num_records,
|
||||
geometric_update=True):
|
||||
"""Initializes the QuantileAdaptiveClipSumQuery.
|
||||
|
||||
Args:
|
||||
|
@ -75,9 +70,9 @@ class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery):
|
|||
target_unclipped_quantile: The desired quantile of updates which should be
|
||||
unclipped. I.e., a value of 0.8 means a value of l2_norm_clip should be
|
||||
found for which approximately 20% of updates are clipped each round.
|
||||
learning_rate: The learning rate for the clipping norm adaptation. A
|
||||
rate of r means that the clipping norm will change by a maximum of r at
|
||||
each step. This maximum is attained when |clip - target| is 1.0.
|
||||
learning_rate: The learning rate for the clipping norm adaptation. A rate
|
||||
of r means that the clipping norm will change by a maximum of r at each
|
||||
step. This maximum is attained when |clip - target| is 1.0.
|
||||
clipped_count_stddev: The stddev of the noise added to the clipped_count.
|
||||
Since the sensitivity of the clipped count is 0.5, as a rule of thumb it
|
||||
should be about 0.5 for reasonable privacy.
|
||||
|
@ -88,16 +83,11 @@ class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery):
|
|||
self._noise_multiplier = noise_multiplier
|
||||
|
||||
self._quantile_estimator_query = quantile_estimator_query.QuantileEstimatorQuery(
|
||||
initial_l2_norm_clip,
|
||||
target_unclipped_quantile,
|
||||
learning_rate,
|
||||
clipped_count_stddev,
|
||||
expected_num_records,
|
||||
geometric_update)
|
||||
initial_l2_norm_clip, target_unclipped_quantile, learning_rate,
|
||||
clipped_count_stddev, expected_num_records, geometric_update)
|
||||
|
||||
self._sum_query = gaussian_query.GaussianSumQuery(
|
||||
initial_l2_norm_clip,
|
||||
noise_multiplier * initial_l2_norm_clip)
|
||||
initial_l2_norm_clip, noise_multiplier * initial_l2_norm_clip)
|
||||
|
||||
assert isinstance(self._sum_query, dp_query.SumAggregationDPQuery)
|
||||
assert isinstance(self._quantile_estimator_query,
|
||||
|
@ -146,70 +136,13 @@ class QuantileAdaptiveClipSumQuery(dp_query.SumAggregationDPQuery):
|
|||
new_l2_norm_clip = tf.maximum(new_l2_norm_clip, 0.0)
|
||||
new_sum_stddev = new_l2_norm_clip * global_state.noise_multiplier
|
||||
new_sum_query_state = self._sum_query.make_global_state(
|
||||
l2_norm_clip=new_l2_norm_clip,
|
||||
stddev=new_sum_stddev)
|
||||
l2_norm_clip=new_l2_norm_clip, stddev=new_sum_stddev)
|
||||
|
||||
new_global_state = self._GlobalState(
|
||||
global_state.noise_multiplier,
|
||||
new_sum_query_state,
|
||||
new_quantile_estimator_state)
|
||||
new_global_state = self._GlobalState(global_state.noise_multiplier,
|
||||
new_sum_query_state,
|
||||
new_quantile_estimator_state)
|
||||
|
||||
return noised_vectors, new_global_state
|
||||
|
||||
def derive_metrics(self, global_state):
|
||||
return collections.OrderedDict(clip=global_state.sum_state.l2_norm_clip)
|
||||
|
||||
|
||||
class QuantileAdaptiveClipAverageQuery(normalized_query.NormalizedQuery):
|
||||
"""DPQuery for average queries with adaptive clipping.
|
||||
|
||||
Clipping norm is tuned adaptively to converge to a value such that a specified
|
||||
quantile of updates are clipped.
|
||||
|
||||
Note that we use "fixed-denominator" estimation: the denominator should be
|
||||
specified as the expected number of records per sample. Accumulating the
|
||||
denominator separately would also be possible but would be produce a higher
|
||||
variance estimator.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
initial_l2_norm_clip,
|
||||
noise_multiplier,
|
||||
denominator,
|
||||
target_unclipped_quantile,
|
||||
learning_rate,
|
||||
clipped_count_stddev,
|
||||
expected_num_records,
|
||||
geometric_update=False):
|
||||
"""Initializes the AdaptiveClipAverageQuery.
|
||||
|
||||
Args:
|
||||
initial_l2_norm_clip: The initial value of clipping norm.
|
||||
noise_multiplier: The multiplier of the l2_norm_clip to make the stddev of
|
||||
the noise.
|
||||
denominator: The normalization constant (applied after noise is added to
|
||||
the sum).
|
||||
target_unclipped_quantile: The desired quantile of updates which should be
|
||||
clipped.
|
||||
learning_rate: The learning rate for the clipping norm adaptation. A
|
||||
rate of r means that the clipping norm will change by a maximum of r at
|
||||
each step. The maximum is attained when |clip - target| is 1.0.
|
||||
clipped_count_stddev: The stddev of the noise added to the clipped_count.
|
||||
Since the sensitivity of the clipped count is 0.5, as a rule of thumb it
|
||||
should be about 0.5 for reasonable privacy.
|
||||
expected_num_records: The expected number of records, used to estimate the
|
||||
clipped count quantile.
|
||||
geometric_update: If True, use geometric updating of clip.
|
||||
"""
|
||||
numerator_query = QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip,
|
||||
noise_multiplier,
|
||||
target_unclipped_quantile,
|
||||
learning_rate,
|
||||
clipped_count_stddev,
|
||||
expected_num_records,
|
||||
geometric_update)
|
||||
super(QuantileAdaptiveClipAverageQuery, self).__init__(
|
||||
numerator_query=numerator_query,
|
||||
denominator=denominator)
|
||||
|
|
|
@ -11,7 +11,6 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tests for QuantileAdaptiveClipSumQuery."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
|
@ -30,8 +29,8 @@ from tensorflow_privacy.privacy.dp_query import test_utils
|
|||
tf.enable_eager_execution()
|
||||
|
||||
|
||||
class QuantileAdaptiveClipSumQueryTest(
|
||||
tf.test.TestCase, parameterized.TestCase):
|
||||
class QuantileAdaptiveClipSumQueryTest(tf.test.TestCase,
|
||||
parameterized.TestCase):
|
||||
|
||||
def test_sum_no_clip_no_noise(self):
|
||||
record1 = tf.constant([2.0, 0.0])
|
||||
|
@ -87,47 +86,6 @@ class QuantileAdaptiveClipSumQueryTest(
|
|||
result_stddev = np.std(noised_sums)
|
||||
self.assertNear(result_stddev, stddev, 0.1)
|
||||
|
||||
def test_average_no_noise(self):
|
||||
record1 = tf.constant([5.0, 0.0]) # Clipped to [3.0, 0.0].
|
||||
record2 = tf.constant([-1.0, 2.0]) # Not clipped.
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipAverageQuery(
|
||||
initial_l2_norm_clip=3.0,
|
||||
noise_multiplier=0.0,
|
||||
denominator=2.0,
|
||||
target_unclipped_quantile=1.0,
|
||||
learning_rate=0.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = query_result.numpy()
|
||||
expected_average = [1.0, 1.0]
|
||||
self.assertAllClose(result, expected_average)
|
||||
|
||||
def test_average_with_noise(self):
|
||||
record1, record2 = 2.71828, 3.14159
|
||||
sum_stddev = 1.0
|
||||
denominator = 2.0
|
||||
clip = 3.0
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipAverageQuery(
|
||||
initial_l2_norm_clip=clip,
|
||||
noise_multiplier=sum_stddev / clip,
|
||||
denominator=denominator,
|
||||
target_unclipped_quantile=1.0,
|
||||
learning_rate=0.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
|
||||
noised_averages = []
|
||||
for _ in range(1000):
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
noised_averages.append(query_result.numpy())
|
||||
|
||||
result_stddev = np.std(noised_averages)
|
||||
avg_stddev = sum_stddev / denominator
|
||||
self.assertNear(result_stddev, avg_stddev, 0.1)
|
||||
|
||||
def test_adaptation_target_zero(self):
|
||||
record1 = tf.constant([8.5])
|
||||
record2 = tf.constant([-7.25])
|
||||
|
@ -154,8 +112,8 @@ class QuantileAdaptiveClipSumQueryTest(
|
|||
expected_sums = [1.25, 1.25, 0.75, 0.25, 0.0]
|
||||
expected_clips = [9.0, 8.0, 7.5, 7.0, 7.0]
|
||||
for expected_sum, expected_clip in zip(expected_sums, expected_clips):
|
||||
actual_sum, global_state = test_utils.run_query(
|
||||
query, [record1, record2], global_state)
|
||||
actual_sum, global_state = test_utils.run_query(query, [record1, record2],
|
||||
global_state)
|
||||
|
||||
actual_clip = global_state.sum_state.l2_norm_clip
|
||||
|
||||
|
@ -170,7 +128,7 @@ class QuantileAdaptiveClipSumQueryTest(
|
|||
initial_l2_norm_clip=16.0,
|
||||
noise_multiplier=0.0,
|
||||
target_unclipped_quantile=0.0,
|
||||
learning_rate=np.log(2.0), # Geometric steps in powers of 2.
|
||||
learning_rate=np.log(2.0), # Geometric steps in powers of 2.
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0,
|
||||
geometric_update=True)
|
||||
|
@ -185,13 +143,13 @@ class QuantileAdaptiveClipSumQueryTest(
|
|||
# 4 / sqrt(2.0). Still only one record is clipped, so it reduces to 2.0.
|
||||
# Now both records are clipped, and the clip norm stays there (at 2.0).
|
||||
|
||||
four_div_root_two = 4 / np.sqrt(2.0) # approx 2.828
|
||||
four_div_root_two = 4 / np.sqrt(2.0) # approx 2.828
|
||||
|
||||
expected_sums = [2.5, 2.5, 1.5, four_div_root_two - 2.5, 0.0]
|
||||
expected_clips = [8.0, 4.0, four_div_root_two, 2.0, 2.0]
|
||||
for expected_sum, expected_clip in zip(expected_sums, expected_clips):
|
||||
actual_sum, global_state = test_utils.run_query(
|
||||
query, [record1, record2], global_state)
|
||||
actual_sum, global_state = test_utils.run_query(query, [record1, record2],
|
||||
global_state)
|
||||
|
||||
actual_clip = global_state.sum_state.l2_norm_clip
|
||||
|
||||
|
@ -224,8 +182,8 @@ class QuantileAdaptiveClipSumQueryTest(
|
|||
expected_sums = [0.0, 0.0, 0.5, 1.0, 1.25]
|
||||
expected_clips = [1.0, 2.0, 2.5, 3.0, 3.0]
|
||||
for expected_sum, expected_clip in zip(expected_sums, expected_clips):
|
||||
actual_sum, global_state = test_utils.run_query(
|
||||
query, [record1, record2], global_state)
|
||||
actual_sum, global_state = test_utils.run_query(query, [record1, record2],
|
||||
global_state)
|
||||
|
||||
actual_clip = global_state.sum_state.l2_norm_clip
|
||||
|
||||
|
@ -240,7 +198,7 @@ class QuantileAdaptiveClipSumQueryTest(
|
|||
initial_l2_norm_clip=0.5,
|
||||
noise_multiplier=0.0,
|
||||
target_unclipped_quantile=1.0,
|
||||
learning_rate=np.log(2.0), # Geometric steps in powers of 2.
|
||||
learning_rate=np.log(2.0), # Geometric steps in powers of 2.
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0,
|
||||
geometric_update=True)
|
||||
|
@ -255,30 +213,31 @@ class QuantileAdaptiveClipSumQueryTest(
|
|||
# multiplied by sqrt(2.0). Still only one is clipped so it increases to 4.0.
|
||||
# Now both records are clipped, and the clip norm stays there (at 4.0).
|
||||
|
||||
two_times_root_two = 2 * np.sqrt(2.0) # approx 2.828
|
||||
two_times_root_two = 2 * np.sqrt(2.0) # approx 2.828
|
||||
|
||||
expected_sums = [0.0, 0.0, 0.5, two_times_root_two - 1.5, 1.5]
|
||||
expected_clips = [1.0, 2.0, two_times_root_two, 4.0, 4.0]
|
||||
for expected_sum, expected_clip in zip(expected_sums, expected_clips):
|
||||
actual_sum, global_state = test_utils.run_query(
|
||||
query, [record1, record2], global_state)
|
||||
actual_sum, global_state = test_utils.run_query(query, [record1, record2],
|
||||
global_state)
|
||||
|
||||
actual_clip = global_state.sum_state.l2_norm_clip
|
||||
|
||||
self.assertAllClose(actual_clip.numpy(), expected_clip)
|
||||
self.assertAllClose(actual_sum.numpy(), (expected_sum,))
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('start_low_arithmetic', True, False),
|
||||
('start_low_geometric', True, True),
|
||||
('start_high_arithmetic', False, False),
|
||||
('start_high_geometric', False, True))
|
||||
@parameterized.named_parameters(('start_low_arithmetic', True, False),
|
||||
('start_low_geometric', True, True),
|
||||
('start_high_arithmetic', False, False),
|
||||
('start_high_geometric', False, True))
|
||||
def test_adaptation_linspace(self, start_low, geometric):
|
||||
# 100 records equally spaced from 0 to 10 in 0.1 increments.
|
||||
# Test that we converge to the correct median value and bounce around it.
|
||||
num_records = 21
|
||||
records = [tf.constant(x) for x in np.linspace(
|
||||
0.0, 10.0, num=num_records, dtype=np.float32)]
|
||||
records = [
|
||||
tf.constant(x)
|
||||
for x in np.linspace(0.0, 10.0, num=num_records, dtype=np.float32)
|
||||
]
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip=(1.0 if start_low else 10.0),
|
||||
|
@ -299,11 +258,10 @@ class QuantileAdaptiveClipSumQueryTest(
|
|||
if t > 40:
|
||||
self.assertNear(actual_clip, 5.0, 0.25)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('start_low_arithmetic', True, False),
|
||||
('start_low_geometric', True, True),
|
||||
('start_high_arithmetic', False, False),
|
||||
('start_high_geometric', False, True))
|
||||
@parameterized.named_parameters(('start_low_arithmetic', True, False),
|
||||
('start_low_geometric', True, True),
|
||||
('start_high_arithmetic', False, False),
|
||||
('start_high_geometric', False, True))
|
||||
def test_adaptation_all_equal(self, start_low, geometric):
|
||||
# 20 equal records. Test that we converge to that record and bounce around
|
||||
# it. Unlike the linspace test, the quantile-matching objective is very
|
||||
|
@ -349,8 +307,8 @@ class QuantileAdaptiveClipSumQueryTest(
|
|||
expected_num_records=2.0,
|
||||
geometric_update=False)
|
||||
|
||||
query = privacy_ledger.QueryWithLedger(
|
||||
query, population_size, selection_probability)
|
||||
query = privacy_ledger.QueryWithLedger(query, population_size,
|
||||
selection_probability)
|
||||
|
||||
# First sample.
|
||||
tf.assign(population_size, 10)
|
||||
|
|
Loading…
Reference in a new issue