forked from 626_privacy/tensorflow_privacy
Add tests for rank generation
This commit is contained in:
parent
4db54d9485
commit
2355e13f44
1 changed files with 81 additions and 0 deletions
|
@ -19,6 +19,7 @@ import numpy as np
|
|||
|
||||
from tensorflow_privacy.privacy.membership_inference_attack import models
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackInputData
|
||||
from tensorflow_privacy.privacy.membership_inference_attack.data_structures import Seq2SeqAttackInputData
|
||||
|
||||
|
||||
class TrainedAttackerTest(absltest.TestCase):
|
||||
|
@ -55,6 +56,45 @@ class TrainedAttackerTest(absltest.TestCase):
|
|||
expected = feature[:2] not in attack_input.logits_train
|
||||
self.assertEqual(attacker_data.is_training_labels_train[i], expected)
|
||||
|
||||
def test_create_seq2seq_attacker_data_logits_and_labels(self):
|
||||
attack_input = Seq2SeqAttackInputData(
|
||||
logits_train=iter([np.array([np.array([[0.1, 0.1, 0.8], [0.7, 0.3, 0]], dtype=np.float32),
|
||||
np.array([[0.4, 0.5, 0.1]], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([[0.25, 0.6, 0.15], [1, 0, 0]], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([[0.9, 0, 0.1], [0.25, 0.5, 0.25]], dtype=np.float32),
|
||||
np.array([[0, 1, 0], [0.2, 0.1, 0.7]], dtype=np.float32)],
|
||||
dtype=object)]),
|
||||
logits_test=iter([np.array([np.array([[0.25, 0.4, 0.35], [0.2, 0.4, 0.4]], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([[0.3, 0.3, 0.4], [0.4, 0.4, 0.2]], dtype=np.float32),
|
||||
np.array([[0.3, 0.35, 0.35]], dtype=np.float32)],
|
||||
dtype=object)]),
|
||||
labels_train=iter([np.array([np.array([2, 0], dtype=np.float32),
|
||||
np.array([1], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([1, 0], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([0, 1], dtype=np.float32),
|
||||
np.array([1, 2], dtype=np.float32)],
|
||||
dtype=object)]),
|
||||
labels_test=iter([np.array([np.array([2, 1], dtype=np.float32)]),
|
||||
np.array([np.array([2, 0], dtype=np.float32),
|
||||
np.array([1], dtype=np.float32)],
|
||||
dtype=object)]),
|
||||
vocab_size=3,
|
||||
train_size=3,
|
||||
test_size=2
|
||||
)
|
||||
attacker_data = models.create_seq2seq_attacker_data(
|
||||
attack_input, 0.25, balance=False)
|
||||
self.assertLen(attacker_data.features_train, 3)
|
||||
self.assertLen(attacker_data.features_test, 2)
|
||||
|
||||
for i, feature in enumerate(attacker_data.features_train):
|
||||
self.assertLen(feature, 1) # each feature has one average rank
|
||||
|
||||
def test_balanced_create_attacker_data_loss_and_logits(self):
|
||||
attack_input = AttackInputData(
|
||||
logits_train=np.array([[1, 2], [5, 6], [8, 9]]),
|
||||
|
@ -70,6 +110,47 @@ class TrainedAttackerTest(absltest.TestCase):
|
|||
expected = feature[:2] not in attack_input.logits_train
|
||||
self.assertEqual(attacker_data.is_training_labels_train[i], expected)
|
||||
|
||||
def test_balanced_create_seq2seq_attacker_data_logits_and_labels(self):
|
||||
attack_input = Seq2SeqAttackInputData(
|
||||
logits_train=iter([np.array([np.array([[0.1, 0.1, 0.8], [0.7, 0.3, 0]], dtype=np.float32),
|
||||
np.array([[0.4, 0.5, 0.1]], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([[0.25, 0.6, 0.15], [1, 0, 0]], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([[0.9, 0, 0.1], [0.25, 0.5, 0.25]], dtype=np.float32),
|
||||
np.array([[0, 1, 0], [0.2, 0.1, 0.7]], dtype=np.float32)],
|
||||
dtype=object)]),
|
||||
logits_test=iter([np.array([np.array([[0.25, 0.4, 0.35], [0.2, 0.4, 0.4]], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([[0.3, 0.3, 0.4], [0.4, 0.4, 0.2]], dtype=np.float32),
|
||||
np.array([[0.3, 0.35, 0.35]], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([[0.25, 0.4, 0.35], [0.2, 0.4, 0.4]], dtype=np.float32)],
|
||||
dtype=object)]),
|
||||
labels_train=iter([np.array([np.array([2, 0], dtype=np.float32),
|
||||
np.array([1], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([1, 0], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([0, 1], dtype=np.float32),
|
||||
np.array([1, 2], dtype=np.float32)],
|
||||
dtype=object)]),
|
||||
labels_test=iter([np.array([np.array([2, 1], dtype=np.float32)]),
|
||||
np.array([np.array([2, 0], dtype=np.float32),
|
||||
np.array([1], dtype=np.float32)],
|
||||
dtype=object),
|
||||
np.array([np.array([2, 1], dtype=np.float32)])]),
|
||||
vocab_size=3,
|
||||
train_size=3,
|
||||
test_size=3
|
||||
)
|
||||
attacker_data = models.create_seq2seq_attacker_data(
|
||||
attack_input, 0.33, balance=True)
|
||||
self.assertLen(attacker_data.features_train, 4)
|
||||
self.assertLen(attacker_data.features_test, 2)
|
||||
|
||||
for i, feature in enumerate(attacker_data.features_train):
|
||||
self.assertLen(feature, 1) # each feature has one average rank
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
||||
|
|
Loading…
Reference in a new issue