From 2b97c7c735cf48d0f6499492fe56da5c497147b4 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Tue, 11 Jun 2019 18:58:33 -0700 Subject: [PATCH] Logistic regression for mnist with new privacy analysis. PiperOrigin-RevId: 252743967 --- tutorials/logistic_regression_mnist.py | 219 +++++++++++++++++++++++++ 1 file changed, 219 insertions(+) create mode 100644 tutorials/logistic_regression_mnist.py diff --git a/tutorials/logistic_regression_mnist.py b/tutorials/logistic_regression_mnist.py new file mode 100644 index 0000000..694ee7d --- /dev/null +++ b/tutorials/logistic_regression_mnist.py @@ -0,0 +1,219 @@ +# Copyright 2019, The TensorFlow Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""DP Logistic Regression on MNIST. + +DP Logistic Regression on MNIST with support for privacy-by-iteration analysis. +Feldman, Vitaly, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. +"Privacy amplification by iteration." +In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), +pp. 521-532. IEEE, 2018. +https://arxiv.org/abs/1808.06651. +""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import math + +from absl import app +from absl import flags + +from distutils.version import LooseVersion + +import numpy as np +import tensorflow as tf + +from privacy.optimizers import dp_optimizer + +if LooseVersion(tf.__version__) < LooseVersion('2.0.0'): + GradientDescentOptimizer = tf.train.GradientDescentOptimizer +else: + GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name + +FLAGS = flags.FLAGS + +flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, ' + 'train with vanilla SGD.') +flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training') +flags.DEFINE_float('noise_multiplier', 0.02, + 'Ratio of the standard deviation to the clipping norm') +flags.DEFINE_integer('batch_size', 1, 'Batch size') +flags.DEFINE_integer('epochs', 5, 'Number of epochs') +flags.DEFINE_integer('microbatches', 1, 'Number of microbatches ' + '(must evenly divide batch_size)') +flags.DEFINE_float('regularizer', 0, 'L2 regularizer coefficient') +flags.DEFINE_string('model_dir', None, 'Model directory') +flags.DEFINE_float('data_l2_norm', 8, + 'Bound on the L2 norm of normalized data.') + + +def lr_model_fn(features, labels, mode, nclasses, dim): + """Model function for logistic regression.""" + input_layer = tf.reshape(features['x'], tuple([-1]) + dim) + + logits = tf.layers.dense(inputs=input_layer, + units=nclasses, + kernel_regularizer=tf.contrib.layers.l2_regularizer( + scale=FLAGS.regularizer), + bias_regularizer=tf.contrib.layers.l2_regularizer( + scale=FLAGS.regularizer) + ) + + # Calculate loss as a vector (to support microbatches in DP-SGD). + vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( + labels=labels, logits=logits) + tf.losses.get_regularization_loss() + # Define mean of loss across minibatch (for reporting through tf.Estimator). + scalar_loss = tf.reduce_mean(vector_loss) + + # Configure the training op (for TRAIN mode). + if mode == tf.estimator.ModeKeys.TRAIN: + + if FLAGS.dpsgd: + # Use DP version of GradientDescentOptimizer. Other optimizers are + # available in dp_optimizer. Most optimizers inheriting from + # tf.train.Optimizer should be wrappable in differentially private + # counterparts by calling dp_optimizer.optimizer_from_args(). + # The loss function is L-Lipschitz with L = sqrt(2*(||x||^2 + 1)) where + # ||x|| is the norm of the data. + optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer( + l2_norm_clip=math.sqrt(2*(FLAGS.data_l2_norm**2 + 1)), + noise_multiplier=FLAGS.noise_multiplier, + num_microbatches=FLAGS.microbatches, + learning_rate=FLAGS.learning_rate) + opt_loss = vector_loss + else: + optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate) + opt_loss = scalar_loss + global_step = tf.train.get_global_step() + train_op = optimizer.minimize(loss=opt_loss, global_step=global_step) + # In the following, we pass the mean of the loss (scalar_loss) rather than + # the vector_loss because tf.estimator requires a scalar loss. This is only + # used for evaluation and debugging by tf.estimator. The actual loss being + # minimized is opt_loss defined above and passed to optimizer.minimize(). + return tf.estimator.EstimatorSpec(mode=mode, + loss=scalar_loss, + train_op=train_op) + + # Add evaluation metrics (for EVAL mode). + elif mode == tf.estimator.ModeKeys.EVAL: + eval_metric_ops = { + 'accuracy': + tf.metrics.accuracy( + labels=labels, + predictions=tf.argmax(input=logits, axis=1)) + } + return tf.estimator.EstimatorSpec(mode=mode, + loss=scalar_loss, + eval_metric_ops=eval_metric_ops) + + +def normalize_data(data, data_l2_norm): + """Normalizes data such that each samples has bounded L2 norm. + + Args: + data: the dataset. Each row represents one samples. + data_l2_norm: the target upper bound on the L2 norm. + """ + + for i in range(data.shape[0]): + norm = np.linalg.norm(data[i]) + if norm > data_l2_norm: + data[i] = data[i] / norm * data_l2_norm + + +def load_mnist(data_l2_norm=float('inf')): + """Loads MNIST and preprocesses to combine training and validation data.""" + train, test = tf.keras.datasets.mnist.load_data() + train_data, train_labels = train + test_data, test_labels = test + + train_data = np.array(train_data, dtype=np.float32) / 255 + test_data = np.array(test_data, dtype=np.float32) / 255 + + train_data = train_data.reshape(train_data.shape[0], -1) + test_data = test_data.reshape(test_data.shape[0], -1) + + idx = np.random.permutation(len(train_data)) # shuffle data once + train_data = train_data[idx] + train_labels = train_labels[idx] + + normalize_data(train_data, data_l2_norm) + normalize_data(test_data, data_l2_norm) + + train_labels = np.array(train_labels, dtype=np.int32) + test_labels = np.array(test_labels, dtype=np.int32) + + return train_data, train_labels, test_data, test_labels + + +def main(unused_argv): + tf.logging.set_verbosity(tf.logging.INFO) + if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0: + raise ValueError('Number of microbatches should divide evenly batch_size') + if FLAGS.data_l2_norm <= 0: + raise ValueError('FLAGS.data_l2_norm needs to be positive.') + if FLAGS.learning_rate > 8 / FLAGS.data_l2_norm**2: + raise ValueError('The amplification by iteration analysis requires' + 'learning_rate <= 2 / beta, where beta is the smoothness' + 'of the loss function and is upper bounded by ||x||^2 / 4' + 'with ||x|| being the largest L2 norm of the samples.') + + # Load training and test data. + # Smoothness = ||x||^2 / 4 where ||x|| is the largest L2 norm of the samples. + # To get bounded smoothness, we normalize the data such that each sample has a + # bounded L2 norm. + train_data, train_labels, test_data, test_labels = load_mnist( + data_l2_norm=FLAGS.data_l2_norm) + + # Instantiate the tf.Estimator. + # pylint: disable=g-long-lambda + model_fn = lambda features, labels, mode: lr_model_fn(features, labels, mode, + nclasses=10, + dim=train_data.shape[1:] + ) + mnist_classifier = tf.estimator.Estimator( + model_fn=model_fn, + model_dir=FLAGS.model_dir) + + # Create tf.Estimator input functions for the training and test data. + # To analyze the per-user privacy loss, we keep the same orders of samples in + # each epoch by setting shuffle=False. + train_input_fn = tf.estimator.inputs.numpy_input_fn( + x={'x': train_data}, + y=train_labels, + batch_size=FLAGS.batch_size, + num_epochs=FLAGS.epochs, + shuffle=False) + eval_input_fn = tf.estimator.inputs.numpy_input_fn( + x={'x': test_data}, + y=test_labels, + num_epochs=1, + shuffle=False) + + # Train the model + steps_per_epoch = train_data.shape[0] // FLAGS.batch_size + mnist_classifier.train(input_fn=train_input_fn, + steps=steps_per_epoch * FLAGS.epochs) + + # Evaluate the model and print results + eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) + test_accuracy = eval_results['accuracy'] + print('Test accuracy after %d epochs is: %.3f' % (FLAGS.epochs, + test_accuracy)) + + +if __name__ == '__main__': + app.run(main)