forked from 626_privacy/tensorflow_privacy
Add files via upload
This commit is contained in:
parent
0b01471497
commit
2ef5c6e332
1 changed files with 61 additions and 0 deletions
61
tensorflow_privacy/privacy/analysis/gdp_accountant.py
Normal file
61
tensorflow_privacy/privacy/analysis/gdp_accountant.py
Normal file
|
@ -0,0 +1,61 @@
|
||||||
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# =============================================================================
|
||||||
|
|
||||||
|
r"""This code applies the Dual and Central Limit
|
||||||
|
Theorem (CLT) to estimate privacy budget of an iterated subsampled
|
||||||
|
Gaussian Mechanism (by either uniform or Poisson subsampling).
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from scipy.stats import norm
|
||||||
|
from scipy import optimize
|
||||||
|
|
||||||
|
# Total number of examples:N
|
||||||
|
# batch size:batch_size
|
||||||
|
# Noise multiplier for DP-SGD/DP-Adam:noise_multiplier
|
||||||
|
# current epoch:epoch
|
||||||
|
# Target delta:delta
|
||||||
|
|
||||||
|
def compute_mu_uniform(epoch, noise_multi, N, batch_size):
|
||||||
|
'''Compute mu from uniform subsampling'''
|
||||||
|
T = epoch*N/batch_size
|
||||||
|
c = batch_size*np.sqrt(T)/N
|
||||||
|
return np.sqrt(2)*c*np.sqrt(np.exp(noise_multi**(-2))*\
|
||||||
|
norm.cdf(1.5/noise_multi)+3*norm.cdf(-0.5/noise_multi)-2)
|
||||||
|
|
||||||
|
def compute_mu_Poisson(epoch, noise_multi, N, batch_size):
|
||||||
|
'''Compute mu from Poisson subsampling'''
|
||||||
|
T = epoch*N/batch_size
|
||||||
|
return np.sqrt(np.exp(noise_multi**(-2))-1)*np.sqrt(T)*batch_size/N
|
||||||
|
|
||||||
|
def delta_eps_mu(eps, mu):
|
||||||
|
'''Dual between mu-GDP and (epsilon, delta)-DP'''
|
||||||
|
return norm.cdf(-eps/mu+mu/2)-np.exp(eps)*norm.cdf(-eps/mu-mu/2)
|
||||||
|
|
||||||
|
def eps_from_mu(mu, delta):
|
||||||
|
'''inverse Dual'''
|
||||||
|
def f(x):
|
||||||
|
'''reversely solving dual'''
|
||||||
|
return delta_eps_mu(x, mu) - delta
|
||||||
|
return optimize.root_scalar(f, bracket=[0, 500], method='brentq').root
|
||||||
|
|
||||||
|
def compute_eps_uniform(epoch, noise_multi, N, batch_size, delta):
|
||||||
|
'''inverse Dual of uniform subsampling'''
|
||||||
|
return eps_from_mu(compute_mu_uniform(epoch, noise_multi, N, batch_size), delta)
|
||||||
|
|
||||||
|
def compute_eps_Poisson(epoch, noise_multi, N, batch_size, delta):
|
||||||
|
'''inverse Dual of Poisson subsampling'''
|
||||||
|
return eps_from_mu(compute_mu_Poisson(epoch, noise_multi, N, batch_size), delta)
|
Loading…
Reference in a new issue