Use better group privacy bound in computing user level privacy [TF Privacy]

PiperOrigin-RevId: 526852999
This commit is contained in:
A. Unique TensorFlower 2023-04-24 22:16:51 -07:00
parent 60cb0dd2fb
commit 33bbc87ff2
2 changed files with 65 additions and 32 deletions

View file

@ -28,6 +28,11 @@ class UserLevelDPComputationError(Exception):
"""Error raised if user-level epsilon computation fails.""" """Error raised if user-level epsilon computation fails."""
def _logexpm1(x: float) -> float:
"""Returns log(exp(x) - 1)."""
return x + math.log(-math.expm1(-x))
def _compute_dp_sgd_user_privacy( def _compute_dp_sgd_user_privacy(
num_epochs: float, num_epochs: float,
noise_multiplier: float, noise_multiplier: float,
@ -100,21 +105,32 @@ def _compute_dp_sgd_user_privacy(
# log(G(F(example_delta), example_delta)) - log(user_delta) = 0 # log(G(F(example_delta), example_delta)) - log(user_delta) = 0
# Then we can return user_eps = H(F(example_delta)). # Then we can return user_eps = H(F(example_delta)).
log_k = math.log(max_examples_per_user)
target_user_log_delta = math.log(user_delta) target_user_log_delta = math.log(user_delta)
def user_log_delta_gap(example_log_delta): # We store all example_eps computed for any example_delta in the following
example_eps = _compute_dp_sgd_example_privacy( # method. This is done so that we don't have to recompute values for the same
num_epochs, # delta.
noise_multiplier, epsilon_cache = dict()
math.exp(example_log_delta),
used_microbatching,
poisson_subsampling_probability,
)
# Estimate user_eps, user_log_delta using Vadhan Lemma 2.2. def user_log_delta_gap(example_log_delta):
if example_log_delta not in epsilon_cache:
epsilon_cache[example_log_delta] = _compute_dp_sgd_example_privacy(
num_epochs,
noise_multiplier,
math.exp(example_log_delta),
used_microbatching,
poisson_subsampling_probability,
)
example_eps = epsilon_cache[example_log_delta]
# Estimate user_eps, user_log_delta using Vadhan Lemma 2.2, using a tighter
# bound seen in the penultimate line of the proof, given as
# user_delta = (example_delta * (exp(k * example_eps) - 1)
# / (exp(example_eps) - 1))
user_eps = max_examples_per_user * example_eps user_eps = max_examples_per_user * example_eps
user_log_delta = log_k + user_eps + example_log_delta user_log_delta = (
example_log_delta + _logexpm1(user_eps) - _logexpm1(example_eps)
)
return user_log_delta - target_user_log_delta return user_log_delta - target_user_log_delta
# We need bounds on the example-level delta. The supplied user-level delta # We need bounds on the example-level delta. The supplied user-level delta
@ -164,9 +180,16 @@ def _compute_dp_sgd_user_privacy(
) )
# Vadhan (2017) "The complexity of differential privacy" Lemma 2.2. # Vadhan (2017) "The complexity of differential privacy" Lemma 2.2.
# user_delta = k * exp(k * example_eps) * example_delta if example_log_delta not in epsilon_cache:
# Given example_delta, we can solve for (k * example_eps) = user_eps. epsilon_cache[example_log_delta] = _compute_dp_sgd_example_privacy(
return max(0, target_user_log_delta - log_k - example_log_delta) num_epochs,
noise_multiplier,
math.exp(example_log_delta),
used_microbatching,
poisson_subsampling_probability,
)
example_eps = epsilon_cache[example_log_delta]
return max_examples_per_user * example_eps
def _compute_dp_sgd_example_privacy( def _compute_dp_sgd_example_privacy(
@ -354,7 +377,7 @@ using RDP accounting and group privacy:""",
paragraphs.append( paragraphs.append(
textwrap.fill( textwrap.fill(
"""\ """\
No user-level privacy guarantee is possible witout a bound on the number of \ No user-level privacy guarantee is possible without a bound on the number of \
examples per user.""", examples per user.""",
width=80, width=80,
) )

View file

@ -134,25 +134,35 @@ class ComputeDpSgdPrivacyTest(parameterized.TestCase):
self.assertEqual(user_eps, example_eps) self.assertEqual(user_eps, example_eps)
@parameterized.parameters((0.9, 2), (1.1, 3), (2.3, 13)) @parameterized.parameters((0.9, 2), (1.1, 3), (2.3, 13))
def test_user_privacy_epsilon_delta_consistency(self, z, k): def test_user_privacy_epsilon_delta_consistency(
self, noise_multiplier, max_examples_per_user
):
"""Tests example/user epsilons consistent with Vadhan (2017) Lemma 2.2.""" """Tests example/user epsilons consistent with Vadhan (2017) Lemma 2.2."""
num_epochs = 5 num_epochs = 5
user_delta = 1e-6 example_delta = 1e-8
q = 2e-4 q = 2e-4
user_eps = _user_privacy(
num_epochs,
noise_multiplier=z,
user_delta=user_delta,
max_examples_per_user=k,
poisson_subsampling_probability=q,
)
example_eps = _example_privacy( example_eps = _example_privacy(
num_epochs, num_epochs,
noise_multiplier=z, noise_multiplier=noise_multiplier,
example_delta=user_delta / (k * math.exp(user_eps)), example_delta=example_delta,
poisson_subsampling_probability=q, poisson_subsampling_probability=q,
) )
self.assertAlmostEqual(user_eps, example_eps * k)
user_delta = math.exp(
math.log(example_delta)
+ compute_dp_sgd_privacy_lib._logexpm1(
max_examples_per_user * example_eps
)
- compute_dp_sgd_privacy_lib._logexpm1(example_eps)
)
user_eps = _user_privacy(
num_epochs,
noise_multiplier=noise_multiplier,
user_delta=user_delta,
max_examples_per_user=max_examples_per_user,
poisson_subsampling_probability=q,
)
self.assertAlmostEqual(user_eps, example_eps * max_examples_per_user)
def test_dp_sgd_privacy_statement_no_user_dp(self): def test_dp_sgd_privacy_statement_no_user_dp(self):
statement = compute_dp_sgd_privacy_lib.compute_dp_sgd_privacy_statement( statement = compute_dp_sgd_privacy_lib.compute_dp_sgd_privacy_statement(
@ -171,7 +181,7 @@ RDP accounting:
Epsilon with each example occurring once per epoch: 13.376 Epsilon with each example occurring once per epoch: 13.376
Epsilon assuming Poisson sampling (*): 1.616 Epsilon assuming Poisson sampling (*): 1.616
No user-level privacy guarantee is possible witout a bound on the number of No user-level privacy guarantee is possible without a bound on the number of
examples per user. examples per user.
(*) Poisson sampling is not usually done in training pipelines, but assuming (*) Poisson sampling is not usually done in training pipelines, but assuming
@ -201,8 +211,8 @@ RDP accounting:
User-level DP with add-or-remove-one adjacency at delta = 1e-06 computed using User-level DP with add-or-remove-one adjacency at delta = 1e-06 computed using
RDP accounting and group privacy: RDP accounting and group privacy:
Epsilon with each example occurring once per epoch: 113.899 Epsilon with each example occurring once per epoch: 85.940
Epsilon assuming Poisson sampling (*): 8.129 Epsilon assuming Poisson sampling (*): 6.425
(*) Poisson sampling is not usually done in training pipelines, but assuming (*) Poisson sampling is not usually done in training pipelines, but assuming
that the data was randomly shuffled, it is believed the actual epsilon should be that the data was randomly shuffled, it is believed the actual epsilon should be
@ -214,11 +224,11 @@ order.
def test_dp_sgd_privacy_statement_user_dp_infinite(self): def test_dp_sgd_privacy_statement_user_dp_infinite(self):
statement = compute_dp_sgd_privacy_lib.compute_dp_sgd_privacy_statement( statement = compute_dp_sgd_privacy_lib.compute_dp_sgd_privacy_statement(
**DP_SGD_STATEMENT_KWARGS, **DP_SGD_STATEMENT_KWARGS,
max_examples_per_user=9, max_examples_per_user=10,
) )
expected_statement = """\ expected_statement = """\
DP-SGD performed over 10000 examples with 64 examples per iteration, noise DP-SGD performed over 10000 examples with 64 examples per iteration, noise
multiplier 2.0 for 5.0 epochs with microbatching, and at most 9 examples per multiplier 2.0 for 5.0 epochs with microbatching, and at most 10 examples per
user. user.
This privacy guarantee protects the release of all model checkpoints in addition This privacy guarantee protects the release of all model checkpoints in addition