forked from 626_privacy/tensorflow_privacy
Adds RdpAccountant: implementation of PrivacyAccountant for RDP. Also adds UnsupportedEventError for handling unsupported events by PrivacyAccountant.
PiperOrigin-RevId: 397878895
This commit is contained in:
parent
b572707cfc
commit
388f46ffa0
4 changed files with 997 additions and 8 deletions
|
@ -16,8 +16,8 @@
|
|||
import abc
|
||||
import enum
|
||||
|
||||
from tensorflow_privacy.privacy.dp_event import dp_event
|
||||
from tensorflow_privacy.privacy.dp_event import dp_event_builder
|
||||
from tensorflow_privacy.privacy.analysis import dp_event
|
||||
from tensorflow_privacy.privacy.analysis import dp_event_builder
|
||||
|
||||
|
||||
class NeighboringRelation(enum.Enum):
|
||||
|
@ -25,6 +25,10 @@ class NeighboringRelation(enum.Enum):
|
|||
REPLACE_ONE = 2
|
||||
|
||||
|
||||
class UnsupportedEventError(Exception):
|
||||
"""Exception to raise if _compose is called on unsupported event type."""
|
||||
|
||||
|
||||
class PrivacyAccountant(metaclass=abc.ABCMeta):
|
||||
"""Abstract base class for privacy accountants."""
|
||||
|
||||
|
@ -43,7 +47,7 @@ class PrivacyAccountant(metaclass=abc.ABCMeta):
|
|||
return self._neighboring_relation
|
||||
|
||||
@abc.abstractmethod
|
||||
def is_supported(self, event: dp_event.DpEvent) -> bool:
|
||||
def supports(self, event: dp_event.DpEvent) -> bool:
|
||||
"""Checks whether the `DpEvent` can be processed by this accountant.
|
||||
|
||||
In general this will require recursively checking the structure of the
|
||||
|
@ -59,7 +63,7 @@ class PrivacyAccountant(metaclass=abc.ABCMeta):
|
|||
|
||||
@abc.abstractmethod
|
||||
def _compose(self, event: dp_event.DpEvent, count: int = 1):
|
||||
"""Update internal state to account for application of a `DpEvent`.
|
||||
"""Updates internal state to account for application of a `DpEvent`.
|
||||
|
||||
Calls to `get_epsilon` or `get_delta` after calling `_compose` will return
|
||||
values that account for this `DpEvent`.
|
||||
|
@ -70,7 +74,7 @@ class PrivacyAccountant(metaclass=abc.ABCMeta):
|
|||
"""
|
||||
|
||||
def compose(self, event: dp_event.DpEvent, count: int = 1):
|
||||
"""Update internal state to account for application of a `DpEvent`.
|
||||
"""Updates internal state to account for application of a `DpEvent`.
|
||||
|
||||
Calls to `get_epsilon` or `get_delta` after calling `compose` will return
|
||||
values that account for this `DpEvent`.
|
||||
|
@ -80,10 +84,15 @@ class PrivacyAccountant(metaclass=abc.ABCMeta):
|
|||
count: The number of times to compose the event.
|
||||
|
||||
Raises:
|
||||
TypeError: `event` is not supported by this `PrivacyAccountant`.
|
||||
UnsupportedEventError: `event` is not supported by this
|
||||
`PrivacyAccountant`.
|
||||
"""
|
||||
if not self.is_supported(event):
|
||||
raise TypeError(f'`DpEvent` {event} is of unsupported type.')
|
||||
if not isinstance(event, dp_event.DpEvent):
|
||||
raise TypeError(f'`event` must be `DpEvent`. Found {type(event)}.')
|
||||
|
||||
if not self.supports(event):
|
||||
raise UnsupportedEventError('Unsupported event: {event}.')
|
||||
|
||||
self._ledger.compose(event, count)
|
||||
self._compose(event, count)
|
||||
|
||||
|
|
101
tensorflow_privacy/privacy/analysis/privacy_accountant_test.py
Normal file
101
tensorflow_privacy/privacy/analysis/privacy_accountant_test.py
Normal file
|
@ -0,0 +1,101 @@
|
|||
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Abstract base class for tests of `PrivacyAccountant` classes.
|
||||
|
||||
Checks that a class derived from `PrivacyAccountant` has the correct behavior
|
||||
for standard `DpEvent` classes.
|
||||
"""
|
||||
|
||||
from typing import Collection
|
||||
|
||||
from absl.testing import absltest
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import dp_event
|
||||
from tensorflow_privacy.privacy.analysis import privacy_accountant
|
||||
|
||||
|
||||
class PrivacyAccountantTest(absltest.TestCase):
|
||||
|
||||
def _make_test_accountants(
|
||||
self) -> Collection[privacy_accountant.PrivacyAccountant]:
|
||||
"""Makes a list of accountants to test.
|
||||
|
||||
Subclasses should define this to return a list of accountants to be tested.
|
||||
|
||||
Returns:
|
||||
A list of accountants to test.
|
||||
"""
|
||||
return []
|
||||
|
||||
def test_make_test_accountants(self):
|
||||
self.assertNotEmpty(self._make_test_accountants())
|
||||
|
||||
def test_unsupported(self):
|
||||
|
||||
class UnknownDpEvent(dp_event.DpEvent):
|
||||
pass
|
||||
|
||||
for accountant in self._make_test_accountants():
|
||||
for unsupported in [dp_event.UnsupportedDpEvent(), UnknownDpEvent()]:
|
||||
self.assertFalse(accountant.supports(unsupported))
|
||||
self.assertFalse(
|
||||
accountant.supports(dp_event.SelfComposedDpEvent(unsupported, 10)))
|
||||
self.assertFalse(
|
||||
accountant.supports(dp_event.ComposedDpEvent([unsupported])))
|
||||
|
||||
def test_no_events(self):
|
||||
for accountant in self._make_test_accountants():
|
||||
self.assertEqual(accountant.get_epsilon(1e-12), 0)
|
||||
self.assertEqual(accountant.get_epsilon(0), 0)
|
||||
self.assertEqual(accountant.get_epsilon(1), 0)
|
||||
try:
|
||||
self.assertEqual(accountant.get_delta(1e-12), 0)
|
||||
self.assertEqual(accountant.get_delta(0), 0)
|
||||
self.assertEqual(accountant.get_delta(float('inf')), 0)
|
||||
except NotImplementedError:
|
||||
# Implementing `get_delta` is optional.
|
||||
pass
|
||||
|
||||
def test_no_op(self):
|
||||
for accountant in self._make_test_accountants():
|
||||
event = dp_event.NoOpDpEvent()
|
||||
self.assertTrue(accountant.supports(event))
|
||||
accountant._compose(event)
|
||||
self.assertEqual(accountant.get_epsilon(1e-12), 0)
|
||||
self.assertEqual(accountant.get_epsilon(0), 0)
|
||||
self.assertEqual(accountant.get_epsilon(1), 0)
|
||||
try:
|
||||
self.assertEqual(accountant.get_delta(1e-12), 0)
|
||||
self.assertEqual(accountant.get_delta(0), 0)
|
||||
self.assertEqual(accountant.get_delta(float('inf')), 0)
|
||||
except NotImplementedError:
|
||||
# Implementing `get_delta` is optional.
|
||||
pass
|
||||
|
||||
def test_non_private(self):
|
||||
for accountant in self._make_test_accountants():
|
||||
event = dp_event.NonPrivateDpEvent()
|
||||
self.assertTrue(accountant.supports(event))
|
||||
accountant._compose(event)
|
||||
self.assertEqual(accountant.get_epsilon(0.99), float('inf'))
|
||||
self.assertEqual(accountant.get_epsilon(0), float('inf'))
|
||||
self.assertEqual(accountant.get_epsilon(1), float('inf'))
|
||||
try:
|
||||
self.assertEqual(accountant.get_delta(100), 1)
|
||||
self.assertEqual(accountant.get_delta(0), 1)
|
||||
self.assertEqual(accountant.get_delta(float('inf')), 1)
|
||||
except NotImplementedError:
|
||||
# Implementing `get_delta` is optional.
|
||||
pass
|
572
tensorflow_privacy/privacy/analysis/rdp_privacy_accountant.py
Normal file
572
tensorflow_privacy/privacy/analysis/rdp_privacy_accountant.py
Normal file
|
@ -0,0 +1,572 @@
|
|||
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Privacy accountant that uses Renyi differential privacy."""
|
||||
|
||||
import math
|
||||
from typing import Collection, Optional
|
||||
|
||||
import numpy as np
|
||||
from scipy import special
|
||||
import six
|
||||
from tensorflow_privacy.privacy.analysis import dp_event
|
||||
from tensorflow_privacy.privacy.analysis import privacy_accountant
|
||||
|
||||
NeighborRel = privacy_accountant.NeighboringRelation
|
||||
|
||||
|
||||
def _log_add(logx, logy):
|
||||
"""Adds two numbers in the log space."""
|
||||
a, b = min(logx, logy), max(logx, logy)
|
||||
if a == -np.inf: # adding 0
|
||||
return b
|
||||
# Use exp(a) + exp(b) = (exp(a - b) + 1) * exp(b)
|
||||
return math.log1p(math.exp(a - b)) + b # log1p(x) = log(x + 1)
|
||||
|
||||
|
||||
def _log_sub(logx, logy):
|
||||
"""Subtracts two numbers in the log space. Answer must be non-negative."""
|
||||
if logx < logy:
|
||||
raise ValueError('The result of subtraction must be non-negative.')
|
||||
if logy == -np.inf: # subtracting 0
|
||||
return logx
|
||||
if logx == logy:
|
||||
return -np.inf # 0 is represented as -np.inf in the log space.
|
||||
|
||||
try:
|
||||
# Use exp(x) - exp(y) = (exp(x - y) - 1) * exp(y).
|
||||
return math.log(math.expm1(logx - logy)) + logy # expm1(x) = exp(x) - 1
|
||||
except OverflowError:
|
||||
return logx
|
||||
|
||||
|
||||
def _log_sub_sign(logx, logy):
|
||||
"""Returns log(exp(logx)-exp(logy)) and its sign."""
|
||||
if logx > logy:
|
||||
s = True
|
||||
mag = logx + np.log(1 - np.exp(logy - logx))
|
||||
elif logx < logy:
|
||||
s = False
|
||||
mag = logy + np.log(1 - np.exp(logx - logy))
|
||||
else:
|
||||
s = True
|
||||
mag = -np.inf
|
||||
|
||||
return s, mag
|
||||
|
||||
|
||||
def _log_comb(n, k):
|
||||
"""Computes log of binomial coefficient."""
|
||||
return (special.gammaln(n + 1) - special.gammaln(k + 1) -
|
||||
special.gammaln(n - k + 1))
|
||||
|
||||
|
||||
def _compute_log_a_int(q, sigma, alpha):
|
||||
"""Computes log(A_alpha) for integer alpha, 0 < q < 1."""
|
||||
assert isinstance(alpha, six.integer_types)
|
||||
|
||||
# Initialize with 0 in the log space.
|
||||
log_a = -np.inf
|
||||
|
||||
for i in range(alpha + 1):
|
||||
log_coef_i = (
|
||||
_log_comb(alpha, i) + i * math.log(q) + (alpha - i) * math.log(1 - q))
|
||||
|
||||
s = log_coef_i + (i * i - i) / (2 * (sigma**2))
|
||||
log_a = _log_add(log_a, s)
|
||||
|
||||
return float(log_a)
|
||||
|
||||
|
||||
def _compute_log_a_frac(q, sigma, alpha):
|
||||
"""Computes log(A_alpha) for fractional alpha, 0 < q < 1."""
|
||||
# The two parts of A_alpha, integrals over (-inf,z0] and [z0, +inf), are
|
||||
# initialized to 0 in the log space:
|
||||
log_a0, log_a1 = -np.inf, -np.inf
|
||||
i = 0
|
||||
|
||||
z0 = sigma**2 * math.log(1 / q - 1) + .5
|
||||
|
||||
while True: # do ... until loop
|
||||
coef = special.binom(alpha, i)
|
||||
log_coef = math.log(abs(coef))
|
||||
j = alpha - i
|
||||
|
||||
log_t0 = log_coef + i * math.log(q) + j * math.log(1 - q)
|
||||
log_t1 = log_coef + j * math.log(q) + i * math.log(1 - q)
|
||||
|
||||
log_e0 = math.log(.5) + _log_erfc((i - z0) / (math.sqrt(2) * sigma))
|
||||
log_e1 = math.log(.5) + _log_erfc((z0 - j) / (math.sqrt(2) * sigma))
|
||||
|
||||
log_s0 = log_t0 + (i * i - i) / (2 * (sigma**2)) + log_e0
|
||||
log_s1 = log_t1 + (j * j - j) / (2 * (sigma**2)) + log_e1
|
||||
|
||||
if coef > 0:
|
||||
log_a0 = _log_add(log_a0, log_s0)
|
||||
log_a1 = _log_add(log_a1, log_s1)
|
||||
else:
|
||||
log_a0 = _log_sub(log_a0, log_s0)
|
||||
log_a1 = _log_sub(log_a1, log_s1)
|
||||
|
||||
i += 1
|
||||
if max(log_s0, log_s1) < -30:
|
||||
break
|
||||
|
||||
return _log_add(log_a0, log_a1)
|
||||
|
||||
|
||||
def _log_erfc(x):
|
||||
"""Computes log(erfc(x)) with high accuracy for large x."""
|
||||
try:
|
||||
return math.log(2) + special.log_ndtr(-x * 2**.5)
|
||||
except NameError:
|
||||
# If log_ndtr is not available, approximate as follows:
|
||||
r = special.erfc(x)
|
||||
if r == 0.0:
|
||||
# Using the Laurent series at infinity for the tail of the erfc function:
|
||||
# erfc(x) ~ exp(-x^2-.5/x^2+.625/x^4)/(x*pi^.5)
|
||||
# To verify in Mathematica:
|
||||
# Series[Log[Erfc[x]] + Log[x] + Log[Pi]/2 + x^2, {x, Infinity, 6}]
|
||||
return (-math.log(math.pi) / 2 - math.log(x) - x**2 - .5 * x**-2 +
|
||||
.625 * x**-4 - 37. / 24. * x**-6 + 353. / 64. * x**-8)
|
||||
else:
|
||||
return math.log(r)
|
||||
|
||||
|
||||
def _compute_delta(orders, rdp, epsilon):
|
||||
"""Compute delta given a list of RDP values and target epsilon.
|
||||
|
||||
Args:
|
||||
orders: An array of orders.
|
||||
rdp: An array of RDP guarantees.
|
||||
epsilon: The target epsilon.
|
||||
|
||||
Returns:
|
||||
Optimal delta.
|
||||
|
||||
Raises:
|
||||
ValueError: If input is malformed.
|
||||
|
||||
"""
|
||||
if epsilon < 0:
|
||||
raise ValueError(f'Epsilon cannot be negative. Found {epsilon}.')
|
||||
if len(orders) != len(rdp):
|
||||
raise ValueError('Input lists must have the same length.')
|
||||
|
||||
# Basic bound (see https://arxiv.org/abs/1702.07476 Proposition 3 in v3):
|
||||
# delta = min( np.exp((rdp - epsilon) * (orders - 1)) )
|
||||
|
||||
# Improved bound from https://arxiv.org/abs/2004.00010 Proposition 12 (in v4):
|
||||
logdeltas = [] # work in log space to avoid overflows
|
||||
for (a, r) in zip(orders, rdp):
|
||||
if a < 1:
|
||||
raise ValueError(f'Renyi divergence order must be at least 1. Found {a}.')
|
||||
if r < 0:
|
||||
raise ValueError(f'Renyi divergence cannot be negative. Found {r}.')
|
||||
# For small alpha, we are better of with bound via KL divergence:
|
||||
# delta <= sqrt(1-exp(-KL)).
|
||||
# Take a min of the two bounds.
|
||||
if r == 0:
|
||||
logdelta = -np.inf
|
||||
else:
|
||||
logdelta = 0.5 * math.log1p(-math.exp(-r))
|
||||
if a > 1.01:
|
||||
# This bound is not numerically stable as alpha->1.
|
||||
# Thus we have a min value for alpha.
|
||||
# The bound is also not useful for small alpha, so doesn't matter.
|
||||
rdp_bound = (a - 1) * (r - epsilon + math.log1p(-1 / a)) - math.log(a)
|
||||
logdelta = min(logdelta, rdp_bound)
|
||||
|
||||
logdeltas.append(logdelta)
|
||||
|
||||
return min(math.exp(np.min(logdeltas)), 1.)
|
||||
|
||||
|
||||
def _compute_epsilon(orders, rdp, delta):
|
||||
"""Compute epsilon given a list of RDP values and target delta.
|
||||
|
||||
Args:
|
||||
orders: An array of orders.
|
||||
rdp: An array of RDP guarantees.
|
||||
delta: The target delta. Must be >= 0.
|
||||
|
||||
Returns:
|
||||
Optimal epsilon.
|
||||
|
||||
Raises:
|
||||
ValueError: If input is malformed.
|
||||
|
||||
"""
|
||||
if delta < 0:
|
||||
raise ValueError(f'Delta cannot be negative. Found {delta}.')
|
||||
|
||||
if delta == 0:
|
||||
if all(r == 0 for r in rdp):
|
||||
return 0
|
||||
else:
|
||||
return np.inf
|
||||
|
||||
if len(orders) != len(rdp):
|
||||
raise ValueError('Input lists must have the same length.')
|
||||
|
||||
# Basic bound (see https://arxiv.org/abs/1702.07476 Proposition 3 in v3):
|
||||
# epsilon = min( rdp - math.log(delta) / (orders - 1) )
|
||||
|
||||
# Improved bound from https://arxiv.org/abs/2004.00010 Proposition 12 (in v4).
|
||||
# Also appears in https://arxiv.org/abs/2001.05990 Equation 20 (in v1).
|
||||
eps = []
|
||||
for (a, r) in zip(orders, rdp):
|
||||
if a < 1:
|
||||
raise ValueError(f'Renyi divergence order must be at least 1. Found {a}.')
|
||||
if r < 0:
|
||||
raise ValueError(f'Renyi divergence cannot be negative. Found {r}.')
|
||||
|
||||
if delta**2 + math.expm1(-r) > 0:
|
||||
# In this case, we can simply bound via KL divergence:
|
||||
# delta <= sqrt(1-exp(-KL)).
|
||||
epsilon = 0 # No need to try further computation if we have epsilon = 0.
|
||||
elif a > 1.01:
|
||||
# This bound is not numerically stable as alpha->1.
|
||||
# Thus we have a min value of alpha.
|
||||
# The bound is also not useful for small alpha, so doesn't matter.
|
||||
epsilon = r + math.log1p(-1 / a) - math.log(delta * a) / (a - 1)
|
||||
else:
|
||||
# In this case we can't do anything. E.g., asking for delta = 0.
|
||||
epsilon = np.inf
|
||||
eps.append(epsilon)
|
||||
|
||||
return max(0, np.min(eps))
|
||||
|
||||
|
||||
def _stable_inplace_diff_in_log(vec, signs, n=-1):
|
||||
"""Replaces the first n-1 dims of vec with the log of abs difference operator.
|
||||
|
||||
Args:
|
||||
vec: numpy array of floats with size larger than 'n'
|
||||
signs: Optional numpy array of bools with the same size as vec in case one
|
||||
needs to compute partial differences vec and signs jointly describe a
|
||||
vector of real numbers' sign and abs in log scale.
|
||||
n: Optonal upper bound on number of differences to compute. If negative, all
|
||||
differences are computed.
|
||||
|
||||
Returns:
|
||||
The first n-1 dimension of vec and signs will store the log-abs and sign of
|
||||
the difference.
|
||||
|
||||
Raises:
|
||||
ValueError: If input is malformed.
|
||||
"""
|
||||
|
||||
assert vec.shape == signs.shape
|
||||
if n < 0:
|
||||
n = np.max(vec.shape) - 1
|
||||
else:
|
||||
assert np.max(vec.shape) >= n + 1
|
||||
for j in range(0, n, 1):
|
||||
if signs[j] == signs[j + 1]: # When the signs are the same
|
||||
# if the signs are both positive, then we can just use the standard one
|
||||
signs[j], vec[j] = _log_sub_sign(vec[j + 1], vec[j])
|
||||
# otherwise, we do that but toggle the sign
|
||||
if not signs[j + 1]:
|
||||
signs[j] = ~signs[j]
|
||||
else: # When the signs are different.
|
||||
vec[j] = _log_add(vec[j], vec[j + 1])
|
||||
signs[j] = signs[j + 1]
|
||||
|
||||
|
||||
def _get_forward_diffs(fun, n):
|
||||
"""Computes up to nth order forward difference evaluated at 0.
|
||||
|
||||
See Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf
|
||||
|
||||
Args:
|
||||
fun: Function to compute forward differences of.
|
||||
n: Number of differences to compute.
|
||||
|
||||
Returns:
|
||||
Pair (deltas, signs_deltas) of the log deltas and their signs.
|
||||
"""
|
||||
func_vec = np.zeros(n + 3)
|
||||
signs_func_vec = np.ones(n + 3, dtype=bool)
|
||||
|
||||
# ith coordinate of deltas stores log(abs(ith order discrete derivative))
|
||||
deltas = np.zeros(n + 2)
|
||||
signs_deltas = np.zeros(n + 2, dtype=bool)
|
||||
for i in range(1, n + 3, 1):
|
||||
func_vec[i] = fun(1.0 * (i - 1))
|
||||
for i in range(0, n + 2, 1):
|
||||
# Diff in log scale
|
||||
_stable_inplace_diff_in_log(func_vec, signs_func_vec, n=n + 2 - i)
|
||||
deltas[i] = func_vec[0]
|
||||
signs_deltas[i] = signs_func_vec[0]
|
||||
return deltas, signs_deltas
|
||||
|
||||
|
||||
def _compute_log_a(q, noise_multiplier, alpha):
|
||||
if float(alpha).is_integer():
|
||||
return _compute_log_a_int(q, noise_multiplier, int(alpha))
|
||||
else:
|
||||
return _compute_log_a_frac(q, noise_multiplier, alpha)
|
||||
|
||||
|
||||
def _compute_rdp_poisson_subsampled_gaussian(q, noise_multiplier, orders):
|
||||
"""Computes RDP of the Poisson sampled Gaussian mechanism.
|
||||
|
||||
Args:
|
||||
q: The sampling rate.
|
||||
noise_multiplier: The ratio of the standard deviation of the Gaussian noise
|
||||
to the l2-sensitivity of the function to which it is added.
|
||||
orders: An array of RDP orders.
|
||||
|
||||
Returns:
|
||||
The RDPs at all orders. Can be `np.inf`.
|
||||
"""
|
||||
|
||||
def compute_one_order(q, alpha):
|
||||
if np.isinf(alpha) or noise_multiplier == 0:
|
||||
return np.inf
|
||||
|
||||
if q == 0:
|
||||
return 0
|
||||
|
||||
if q == 1.:
|
||||
return alpha / (2 * noise_multiplier**2)
|
||||
|
||||
return _compute_log_a(q, noise_multiplier, alpha) / (alpha - 1)
|
||||
|
||||
return np.array([compute_one_order(q, order) for order in orders])
|
||||
|
||||
|
||||
def _compute_rdp_sample_wor_gaussian(q, noise_multiplier, orders):
|
||||
"""Computes RDP of Gaussian mechanism using sampling without replacement.
|
||||
|
||||
This function applies to the following schemes:
|
||||
1. Sampling w/o replacement: Sample a uniformly random subset of size m = q*n.
|
||||
2. ``Replace one data point'' version of differential privacy, i.e., n is
|
||||
considered public information.
|
||||
|
||||
Reference: Theorem 27 of https://arxiv.org/pdf/1808.00087.pdf (A strengthened
|
||||
version applies subsampled-Gaussian mechanism.)
|
||||
- Wang, Balle, Kasiviswanathan. "Subsampled Renyi Differential Privacy and
|
||||
Analytical Moments Accountant." AISTATS'2019.
|
||||
|
||||
Args:
|
||||
q: The sampling proportion = m / n. Assume m is an integer <= n.
|
||||
noise_multiplier: The ratio of the standard deviation of the Gaussian noise
|
||||
to the l2-sensitivity of the function to which it is added.
|
||||
orders: An array of RDP orders.
|
||||
|
||||
Returns:
|
||||
The RDPs at all orders, can be np.inf.
|
||||
"""
|
||||
return np.array([
|
||||
_compute_rdp_sample_wor_gaussian_scalar(q, noise_multiplier, order)
|
||||
for order in orders
|
||||
])
|
||||
|
||||
|
||||
def _compute_rdp_sample_wor_gaussian_scalar(q, sigma, alpha):
|
||||
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
|
||||
|
||||
Args:
|
||||
q: The sampling proportion = m / n. Assume m is an integer <= n.
|
||||
sigma: The std of the additive Gaussian noise.
|
||||
alpha: The order at which RDP is computed.
|
||||
|
||||
Returns:
|
||||
RDP at alpha, can be np.inf.
|
||||
"""
|
||||
|
||||
assert (q <= 1) and (q >= 0) and (alpha >= 1)
|
||||
|
||||
if q == 0:
|
||||
return 0
|
||||
|
||||
if q == 1.:
|
||||
return alpha / (2 * sigma**2)
|
||||
|
||||
if np.isinf(alpha):
|
||||
return np.inf
|
||||
|
||||
if float(alpha).is_integer():
|
||||
return _compute_rdp_sample_wor_gaussian_int(q, sigma, int(alpha)) / (
|
||||
alpha - 1)
|
||||
else:
|
||||
# When alpha not an integer, we apply Corollary 10 of [WBK19] to interpolate
|
||||
# the CGF and obtain an upper bound
|
||||
alpha_f = math.floor(alpha)
|
||||
alpha_c = math.ceil(alpha)
|
||||
|
||||
x = _compute_rdp_sample_wor_gaussian_int(q, sigma, alpha_f)
|
||||
y = _compute_rdp_sample_wor_gaussian_int(q, sigma, alpha_c)
|
||||
t = alpha - alpha_f
|
||||
return ((1 - t) * x + t * y) / (alpha - 1)
|
||||
|
||||
|
||||
def _compute_rdp_sample_wor_gaussian_int(q, sigma, alpha):
|
||||
"""Compute log(A_alpha) for integer alpha, subsampling without replacement.
|
||||
|
||||
When alpha is smaller than max_alpha, compute the bound Theorem 27 exactly,
|
||||
otherwise compute the bound with Stirling approximation.
|
||||
|
||||
Args:
|
||||
q: The sampling proportion = m / n. Assume m is an integer <= n.
|
||||
sigma: The std of the additive Gaussian noise.
|
||||
alpha: The order at which RDP is computed.
|
||||
|
||||
Returns:
|
||||
RDP at alpha, can be np.inf.
|
||||
"""
|
||||
|
||||
max_alpha = 256
|
||||
assert isinstance(alpha, six.integer_types)
|
||||
|
||||
if np.isinf(alpha):
|
||||
return np.inf
|
||||
elif alpha == 1:
|
||||
return 0
|
||||
|
||||
def cgf(x):
|
||||
# Return rdp(x+1)*x, the rdp of Gaussian mechanism is alpha/(2*sigma**2)
|
||||
return x * 1.0 * (x + 1) / (2.0 * sigma**2)
|
||||
|
||||
def func(x):
|
||||
# Return the rdp of Gaussian mechanism
|
||||
return 1.0 * x / (2.0 * sigma**2)
|
||||
|
||||
# Initialize with 1 in the log space.
|
||||
log_a = 0
|
||||
# Calculates the log term when alpha = 2
|
||||
log_f2m1 = func(2.0) + np.log(1 - np.exp(-func(2.0)))
|
||||
if alpha <= max_alpha:
|
||||
# We need forward differences of exp(cgf)
|
||||
# The following line is the numerically stable way of implementing it.
|
||||
# The output is in polar form with logarithmic magnitude
|
||||
deltas, _ = _get_forward_diffs(cgf, alpha)
|
||||
# Compute the bound exactly requires book keeping of O(alpha**2)
|
||||
|
||||
for i in range(2, alpha + 1):
|
||||
if i == 2:
|
||||
s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(
|
||||
np.log(4) + log_f2m1,
|
||||
func(2.0) + np.log(2))
|
||||
elif i > 2:
|
||||
delta_lo = deltas[int(2 * np.floor(i / 2.0)) - 1]
|
||||
delta_hi = deltas[int(2 * np.ceil(i / 2.0)) - 1]
|
||||
s = np.log(4) + 0.5 * (delta_lo + delta_hi)
|
||||
s = np.minimum(s, np.log(2) + cgf(i - 1))
|
||||
s += i * np.log(q) + _log_comb(alpha, i)
|
||||
log_a = _log_add(log_a, s)
|
||||
return float(log_a)
|
||||
else:
|
||||
# Compute the bound with stirling approximation. Everything is O(x) now.
|
||||
for i in range(2, alpha + 1):
|
||||
if i == 2:
|
||||
s = 2 * np.log(q) + _log_comb(alpha, 2) + np.minimum(
|
||||
np.log(4) + log_f2m1,
|
||||
func(2.0) + np.log(2))
|
||||
else:
|
||||
s = np.log(2) + cgf(i - 1) + i * np.log(q) + _log_comb(alpha, i)
|
||||
log_a = _log_add(log_a, s)
|
||||
|
||||
return log_a
|
||||
|
||||
|
||||
class RdpAccountant(privacy_accountant.PrivacyAccountant):
|
||||
"""Privacy accountant that uses Renyi differential privacy."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
orders: Optional[Collection[float]] = None,
|
||||
neighboring_relation: NeighborRel = NeighborRel.ADD_OR_REMOVE_ONE,
|
||||
):
|
||||
super(RdpAccountant, self).__init__(neighboring_relation)
|
||||
if orders is None:
|
||||
# Default orders chosen to give good coverage for Gaussian mechanism in
|
||||
# the privacy regime of interest. In the future, more orders might be
|
||||
# added, in particular, fractional orders between 1.0 and 10.0 or so.
|
||||
orders = [
|
||||
2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 20, 24, 28, 32, 48, 64, 128,
|
||||
256, 512, 1024
|
||||
]
|
||||
self._orders = np.array(orders)
|
||||
self._rdp = np.zeros_like(orders, dtype=np.float64)
|
||||
|
||||
def supports(self, event: dp_event.DpEvent) -> bool:
|
||||
return self._maybe_compose(event, 0, False)
|
||||
|
||||
def _compose(self, event: dp_event.DpEvent, count: int = 1):
|
||||
self._maybe_compose(event, count, True)
|
||||
|
||||
def _maybe_compose(self, event: dp_event.DpEvent, count: int,
|
||||
do_compose: bool) -> bool:
|
||||
"""Traverses `event` and performs composition if `do_compose` is True.
|
||||
|
||||
If `do_compose` is False, can be used to check whether composition is
|
||||
supported.
|
||||
|
||||
Args:
|
||||
event: A `DpEvent` to process.
|
||||
count: The number of times to compose the event.
|
||||
do_compose: Whether to actually perform the composition.
|
||||
|
||||
Returns:
|
||||
True if event is supported, otherwise False.
|
||||
"""
|
||||
|
||||
if isinstance(event, dp_event.NoOpDpEvent):
|
||||
return True
|
||||
elif isinstance(event, dp_event.NonPrivateDpEvent):
|
||||
if do_compose:
|
||||
self._rdp += np.inf
|
||||
return True
|
||||
elif isinstance(event, dp_event.SelfComposedDpEvent):
|
||||
return self._maybe_compose(event.event, event.count * count, do_compose)
|
||||
elif isinstance(event, dp_event.ComposedDpEvent):
|
||||
return all(
|
||||
self._maybe_compose(e, count, do_compose) for e in event.events)
|
||||
elif isinstance(event, dp_event.GaussianDpEvent):
|
||||
if do_compose:
|
||||
self._rdp += count * _compute_rdp_poisson_subsampled_gaussian(
|
||||
q=1.0, noise_multiplier=event.noise_multiplier, orders=self._orders)
|
||||
return True
|
||||
elif isinstance(event, dp_event.PoissonSampledDpEvent):
|
||||
if (self._neighboring_relation is not NeighborRel.ADD_OR_REMOVE_ONE or
|
||||
not isinstance(event.event, dp_event.GaussianDpEvent)):
|
||||
return False
|
||||
if do_compose:
|
||||
self._rdp += count * _compute_rdp_poisson_subsampled_gaussian(
|
||||
q=event.sampling_probability,
|
||||
noise_multiplier=event.event.noise_multiplier,
|
||||
orders=self._orders)
|
||||
return True
|
||||
elif isinstance(event, dp_event.FixedBatchSampledWorDpEvent):
|
||||
if (self._neighboring_relation is not NeighborRel.REPLACE_ONE or
|
||||
not isinstance(event.event, dp_event.GaussianDpEvent)):
|
||||
return False
|
||||
if do_compose:
|
||||
self._rdp += count * _compute_rdp_sample_wor_gaussian(
|
||||
q=event.batch_size / event.dataset_size,
|
||||
noise_multiplier=event.event.noise_multiplier,
|
||||
orders=self._orders)
|
||||
return True
|
||||
else:
|
||||
# Unsupported event (including `UnsupportedDpEvent`).
|
||||
return False
|
||||
|
||||
def get_epsilon(self, target_delta: float) -> float:
|
||||
return _compute_epsilon(self._orders, self._rdp, target_delta)
|
||||
|
||||
def get_delta(self, target_epsilon: float) -> float:
|
||||
return _compute_delta(self._orders, self._rdp, target_epsilon)
|
|
@ -0,0 +1,307 @@
|
|||
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Tests for rdp_privacy_accountant."""
|
||||
|
||||
import math
|
||||
import sys
|
||||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
import mpmath
|
||||
import numpy as np
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import dp_event
|
||||
from tensorflow_privacy.privacy.analysis import privacy_accountant
|
||||
from tensorflow_privacy.privacy.analysis import privacy_accountant_test
|
||||
from tensorflow_privacy.privacy.analysis import rdp_privacy_accountant
|
||||
|
||||
|
||||
def _get_test_rdp(event, count=1):
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(orders=[2.71828])
|
||||
accountant.compose(event, count)
|
||||
return accountant._rdp[0]
|
||||
|
||||
|
||||
def _log_float_mp(x):
|
||||
# Convert multi-precision input to float log space.
|
||||
if x >= sys.float_info.min:
|
||||
return float(mpmath.log(x))
|
||||
else:
|
||||
return -np.inf
|
||||
|
||||
|
||||
def _compute_a_mp(sigma, q, alpha):
|
||||
"""Compute A_alpha for arbitrary alpha by numerical integration."""
|
||||
|
||||
def mu0(x):
|
||||
return mpmath.npdf(x, mu=0, sigma=sigma)
|
||||
|
||||
def _mu_over_mu0(x, q, sigma):
|
||||
return (1 - q) + q * mpmath.exp((2 * x - 1) / (2 * sigma**2))
|
||||
|
||||
def a_alpha_fn(z):
|
||||
return mu0(z) * _mu_over_mu0(z, q, sigma)**alpha
|
||||
|
||||
bounds = (-mpmath.inf, mpmath.inf)
|
||||
a_alpha, _ = mpmath.quad(a_alpha_fn, bounds, error=True, maxdegree=8)
|
||||
return a_alpha
|
||||
|
||||
|
||||
class RdpPrivacyAccountantTest(privacy_accountant_test.PrivacyAccountantTest,
|
||||
parameterized.TestCase):
|
||||
|
||||
def _make_test_accountants(self):
|
||||
return [
|
||||
rdp_privacy_accountant.RdpAccountant(
|
||||
[2.0], privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE),
|
||||
rdp_privacy_accountant.RdpAccountant(
|
||||
[2.0], privacy_accountant.NeighboringRelation.REPLACE_ONE)
|
||||
]
|
||||
|
||||
def test_supports(self):
|
||||
aor_accountant = rdp_privacy_accountant.RdpAccountant(
|
||||
[2.0], privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE)
|
||||
ro_accountant = rdp_privacy_accountant.RdpAccountant(
|
||||
[2.0], privacy_accountant.NeighboringRelation.REPLACE_ONE)
|
||||
|
||||
event = dp_event.GaussianDpEvent(1.0)
|
||||
self.assertTrue(aor_accountant.supports(event))
|
||||
self.assertTrue(ro_accountant.supports(event))
|
||||
|
||||
event = dp_event.SelfComposedDpEvent(dp_event.GaussianDpEvent(1.0), 6)
|
||||
self.assertTrue(aor_accountant.supports(event))
|
||||
self.assertTrue(ro_accountant.supports(event))
|
||||
|
||||
event = dp_event.ComposedDpEvent(
|
||||
[dp_event.GaussianDpEvent(1.0),
|
||||
dp_event.GaussianDpEvent(2.0)])
|
||||
self.assertTrue(aor_accountant.supports(event))
|
||||
self.assertTrue(ro_accountant.supports(event))
|
||||
|
||||
event = dp_event.PoissonSampledDpEvent(0.1, dp_event.GaussianDpEvent(1.0))
|
||||
self.assertTrue(aor_accountant.supports(event))
|
||||
self.assertFalse(ro_accountant.supports(event))
|
||||
|
||||
event = dp_event.FixedBatchSampledWorDpEvent(1000, 10,
|
||||
dp_event.GaussianDpEvent(1.0))
|
||||
self.assertFalse(aor_accountant.supports(event))
|
||||
self.assertTrue(ro_accountant.supports(event))
|
||||
|
||||
event = dp_event.FixedBatchSampledWrDpEvent(1000, 10,
|
||||
dp_event.GaussianDpEvent(1.0))
|
||||
self.assertFalse(aor_accountant.supports(event))
|
||||
self.assertFalse(ro_accountant.supports(event))
|
||||
|
||||
def test_rdp_composition(self):
|
||||
base_event = dp_event.GaussianDpEvent(3.14159)
|
||||
base_rdp = _get_test_rdp(base_event)
|
||||
|
||||
rdp_with_count = _get_test_rdp(base_event, count=6)
|
||||
self.assertAlmostEqual(rdp_with_count, base_rdp * 6)
|
||||
|
||||
rdp_with_self_compose = _get_test_rdp(
|
||||
dp_event.SelfComposedDpEvent(base_event, 6))
|
||||
self.assertAlmostEqual(rdp_with_self_compose, base_rdp * 6)
|
||||
|
||||
rdp_with_self_compose_and_count = _get_test_rdp(
|
||||
dp_event.SelfComposedDpEvent(base_event, 2), count=3)
|
||||
self.assertAlmostEqual(rdp_with_self_compose_and_count, base_rdp * 6)
|
||||
|
||||
rdp_with_compose = _get_test_rdp(dp_event.ComposedDpEvent([base_event] * 6))
|
||||
self.assertAlmostEqual(rdp_with_compose, base_rdp * 6)
|
||||
|
||||
rdp_with_compose_and_self_compose = _get_test_rdp(
|
||||
dp_event.ComposedDpEvent([
|
||||
dp_event.SelfComposedDpEvent(base_event, 1),
|
||||
dp_event.SelfComposedDpEvent(base_event, 2),
|
||||
dp_event.SelfComposedDpEvent(base_event, 3)
|
||||
]))
|
||||
self.assertAlmostEqual(rdp_with_compose_and_self_compose, base_rdp * 6)
|
||||
|
||||
base_event_2 = dp_event.GaussianDpEvent(1.61803)
|
||||
base_rdp_2 = _get_test_rdp(base_event_2)
|
||||
rdp_with_heterogeneous_compose = _get_test_rdp(
|
||||
dp_event.ComposedDpEvent([base_event, base_event_2]))
|
||||
self.assertAlmostEqual(rdp_with_heterogeneous_compose,
|
||||
base_rdp + base_rdp_2)
|
||||
|
||||
def test_zero_poisson_sample(self):
|
||||
accountant = rdp_privacy_accountant.RdpAccountant([3.14159])
|
||||
accountant.compose(
|
||||
dp_event.PoissonSampledDpEvent(0, dp_event.GaussianDpEvent(1.0)))
|
||||
self.assertEqual(accountant.get_epsilon(1e-10), 0)
|
||||
self.assertEqual(accountant.get_delta(1e-10), 0)
|
||||
|
||||
def test_zero_fixed_batch_sample(self):
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(
|
||||
[3.14159], privacy_accountant.NeighboringRelation.REPLACE_ONE)
|
||||
accountant.compose(
|
||||
dp_event.FixedBatchSampledWorDpEvent(1000, 0,
|
||||
dp_event.GaussianDpEvent(1.0)))
|
||||
self.assertEqual(accountant.get_epsilon(1e-10), 0)
|
||||
self.assertEqual(accountant.get_delta(1e-10), 0)
|
||||
|
||||
def test_epsilon_non_private_gaussian(self):
|
||||
accountant = rdp_privacy_accountant.RdpAccountant([3.14159])
|
||||
accountant.compose(dp_event.GaussianDpEvent(0))
|
||||
self.assertEqual(accountant.get_epsilon(1e-1), np.inf)
|
||||
|
||||
def test_compute_rdp_gaussian(self):
|
||||
alpha = 3.14159
|
||||
sigma = 2.71828
|
||||
event = dp_event.GaussianDpEvent(sigma)
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(orders=[alpha])
|
||||
accountant.compose(event)
|
||||
self.assertAlmostEqual(accountant._rdp[0], alpha / (2 * sigma**2))
|
||||
|
||||
def test_compute_rdp_poisson_sampled_gaussian(self):
|
||||
orders = [1.5, 2.5, 5, 50, 100, np.inf]
|
||||
noise_multiplier = 2.5
|
||||
sampling_probability = 0.01
|
||||
count = 50
|
||||
event = dp_event.SelfComposedDpEvent(
|
||||
dp_event.PoissonSampledDpEvent(
|
||||
sampling_probability, dp_event.GaussianDpEvent(noise_multiplier)),
|
||||
count)
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(orders=orders)
|
||||
accountant.compose(event)
|
||||
self.assertTrue(
|
||||
np.allclose(
|
||||
accountant._rdp, [
|
||||
6.5007e-04, 1.0854e-03, 2.1808e-03, 2.3846e-02, 1.6742e+02,
|
||||
np.inf
|
||||
],
|
||||
rtol=1e-4))
|
||||
|
||||
def test_compute_epsilon_delta_pure_dp(self):
|
||||
orders = range(2, 33)
|
||||
rdp = [1.1 for o in orders] # Constant corresponds to pure DP.
|
||||
|
||||
epsilon = rdp_privacy_accountant._compute_epsilon(orders, rdp, delta=1e-5)
|
||||
# Compare with epsilon computed by hand.
|
||||
self.assertAlmostEqual(epsilon, 1.32783806176)
|
||||
|
||||
delta = rdp_privacy_accountant._compute_delta(
|
||||
orders, rdp, epsilon=1.32783806176)
|
||||
self.assertAlmostEqual(delta, 1e-5)
|
||||
|
||||
def test_compute_epsilon_delta_gaussian(self):
|
||||
orders = [0.001 * i for i in range(1000, 100000)]
|
||||
|
||||
# noise multiplier is chosen to obtain exactly (1,1e-6)-DP.
|
||||
rdp = rdp_privacy_accountant._compute_rdp_poisson_subsampled_gaussian(
|
||||
1, 4.530877117, orders)
|
||||
|
||||
eps = rdp_privacy_accountant._compute_epsilon(orders, rdp, delta=1e-6)
|
||||
self.assertAlmostEqual(eps, 1)
|
||||
|
||||
delta = rdp_privacy_accountant._compute_delta(orders, rdp, epsilon=1)
|
||||
self.assertAlmostEqual(delta, 1e-6)
|
||||
|
||||
params = ({
|
||||
'q': 1e-7,
|
||||
'sigma': .1,
|
||||
'order': 1.01
|
||||
}, {
|
||||
'q': 1e-6,
|
||||
'sigma': .1,
|
||||
'order': 256
|
||||
}, {
|
||||
'q': 1e-5,
|
||||
'sigma': .1,
|
||||
'order': 256.1
|
||||
}, {
|
||||
'q': 1e-6,
|
||||
'sigma': 1,
|
||||
'order': 27
|
||||
}, {
|
||||
'q': 1e-4,
|
||||
'sigma': 1.,
|
||||
'order': 1.5
|
||||
}, {
|
||||
'q': 1e-3,
|
||||
'sigma': 1.,
|
||||
'order': 2
|
||||
}, {
|
||||
'q': .01,
|
||||
'sigma': 10,
|
||||
'order': 20
|
||||
}, {
|
||||
'q': .1,
|
||||
'sigma': 100,
|
||||
'order': 20.5
|
||||
}, {
|
||||
'q': .99,
|
||||
'sigma': .1,
|
||||
'order': 256
|
||||
}, {
|
||||
'q': .999,
|
||||
'sigma': 100,
|
||||
'order': 256.1
|
||||
})
|
||||
|
||||
# pylint:disable=undefined-variable
|
||||
@parameterized.parameters(p for p in params)
|
||||
def test_compute_log_a_equals_mp(self, q, sigma, order):
|
||||
# Compare the cheap computation of log(A) with an expensive, multi-precision
|
||||
# computation.
|
||||
log_a = rdp_privacy_accountant._compute_log_a(q, sigma, order)
|
||||
log_a_mp = _log_float_mp(_compute_a_mp(sigma, q, order))
|
||||
np.testing.assert_allclose(log_a, log_a_mp, rtol=1e-4)
|
||||
|
||||
def test_delta_bounds_gaussian(self):
|
||||
# Compare the optimal bound for Gaussian with the one derived from RDP.
|
||||
# Also compare the RDP upper bound with the "standard" upper bound.
|
||||
orders = [0.1 * x for x in range(10, 505)]
|
||||
eps_vec = [0.1 * x for x in range(500)]
|
||||
rdp = rdp_privacy_accountant._compute_rdp_poisson_subsampled_gaussian(
|
||||
1, 1, orders)
|
||||
for eps in eps_vec:
|
||||
delta = rdp_privacy_accountant._compute_delta(orders, rdp, epsilon=eps)
|
||||
# For comparison, we compute the optimal guarantee for Gaussian
|
||||
# using https://arxiv.org/abs/1805.06530 Theorem 8 (in v2).
|
||||
delta0 = math.erfc((eps - .5) / math.sqrt(2)) / 2
|
||||
delta0 = delta0 - math.exp(eps) * math.erfc((eps + .5) / math.sqrt(2)) / 2
|
||||
self.assertLessEqual(delta0, delta + 1e-300) # need tolerance 10^-300
|
||||
|
||||
# Compute the "standard" upper bound, which should be an upper bound.
|
||||
# Note, if orders is too sparse, this will NOT be an upper bound.
|
||||
if eps >= 0.5:
|
||||
delta1 = math.exp(-0.5 * (eps - 0.5)**2)
|
||||
else:
|
||||
delta1 = 1
|
||||
self.assertLessEqual(delta, delta1 + 1e-300)
|
||||
|
||||
def test_epsilon_delta_consistency(self):
|
||||
orders = range(2, 50) # Large range of orders (helps test for overflows).
|
||||
for q in [0, 0.01, 0.1, 0.8, 1.]:
|
||||
for multiplier in [0.0, 0.1, 1., 10., 100.]:
|
||||
event = dp_event.PoissonSampledDpEvent(
|
||||
q, dp_event.GaussianDpEvent(multiplier))
|
||||
accountant = rdp_privacy_accountant.RdpAccountant(orders)
|
||||
accountant.compose(event)
|
||||
for delta in [.99, .9, .1, .01, 1e-3, 1e-5, 1e-9, 1e-12]:
|
||||
epsilon = accountant.get_epsilon(delta)
|
||||
delta2 = accountant.get_delta(epsilon)
|
||||
if np.isposinf(epsilon):
|
||||
self.assertEqual(delta2, 1.0)
|
||||
elif epsilon == 0:
|
||||
self.assertLessEqual(delta2, delta)
|
||||
else:
|
||||
self.assertAlmostEqual(delta, delta2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
Loading…
Reference in a new issue