Add DP-enabled binary-class head and multi-class heads for Estimator.

PiperOrigin-RevId: 325921076
This commit is contained in:
Steve Chien 2020-08-10 17:19:05 -07:00 committed by A. Unique TensorFlower
parent 43a0e4be8a
commit 3a641e077e
7 changed files with 713 additions and 1 deletions

View file

@ -0,0 +1,68 @@
package(default_visibility = ["//visibility:public"])
licenses(["notice"]) # Apache 2.0
py_library(
name = "head_utils",
srcs = [
"head_utils.py",
],
deps = [
":binary_class_head",
":multi_class_head",
],
)
py_library(
name = "binary_class_head",
srcs = [
"binary_class_head.py",
],
deps = [
"//third_party/py/tensorflow",
# TODO(b/163395075): Remove this dependency once necessary function is public.
"//third_party/tensorflow/python:keras_lib",
"//third_party/tensorflow_estimator",
],
)
py_library(
name = "multi_class_head",
srcs = [
"multi_class_head.py",
],
deps = [
"//third_party/py/tensorflow",
# TODO(b/163395075): Remove this dependency once necessary function is public.
"//third_party/tensorflow/python:keras_lib",
"//third_party/tensorflow_estimator",
],
)
py_test(
name = "binary_class_head_test",
timeout = "long",
srcs = ["binary_class_head_test.py"],
python_version = "PY3",
deps = [
":binary_class_head",
"//third_party/py/absl/testing:parameterized",
"//third_party/py/six",
"//third_party/py/tensorflow",
"//third_party/py/tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
],
)
py_test(
name = "multi_class_head_test",
timeout = "long",
srcs = ["multi_class_head_test.py"],
python_version = "PY3",
deps = [
":multi_class_head",
"//third_party/py/absl/testing:parameterized",
"//third_party/py/six",
"//third_party/py/tensorflow",
"//third_party/py/tensorflow_privacy/privacy/optimizers:dp_optimizer_keras",
],
)

View file

@ -0,0 +1,147 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Binary class head for Estimator that allow integration with TF Privacy."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.keras.utils import losses_utils # pylint: disable=g-direct-tensorflow-import
from tensorflow_estimator.python.estimator import model_fn
from tensorflow_estimator.python.estimator.canned import prediction_keys
from tensorflow_estimator.python.estimator.export import export_output
from tensorflow_estimator.python.estimator.head import base_head
from tensorflow_estimator.python.estimator.mode_keys import ModeKeys
class DPBinaryClassHead(tf.estimator.BinaryClassHead):
"""Creates a TF Privacy-enabled version of BinaryClassHead."""
def __init__(self,
weight_column=None,
thresholds=None,
label_vocabulary=None,
loss_reduction=tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,
loss_fn=None,
name=None):
super(DPBinaryClassHead, self).__init__(
weight_column=weight_column,
thresholds=thresholds,
label_vocabulary=label_vocabulary,
loss_reduction=tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,
loss_fn=loss_fn,
name=name)
def loss(self,
labels,
logits,
features=None,
mode=None,
regularization_losses=None):
"""Returns regularized training loss. See `base_head.Head` for details."""
del mode # Unused for this head.
with tf.compat.v1.name_scope(
'losses', values=(logits, labels, regularization_losses, features)):
logits = base_head.check_logits_final_dim(logits, self.logits_dimension)
labels = self._processed_labels(logits, labels)
unweighted_loss, weights = self._unweighted_loss_and_weights(
logits, labels, features)
vector_training_loss = losses_utils.compute_weighted_loss(
unweighted_loss,
sample_weight=weights,
reduction=tf.keras.losses.Reduction.NONE)
regularization_loss = tf.math.add_n(
regularization_losses) if regularization_losses is not None else None
vector_regularized_training_loss = (
tf.add(vector_training_loss, regularization_loss)
if regularization_loss is not None else vector_training_loss)
return vector_regularized_training_loss
def _create_tpu_estimator_spec(self,
features,
mode,
logits,
labels=None,
optimizer=None,
trainable_variables=None,
train_op_fn=None,
update_ops=None,
regularization_losses=None):
"""See superclass for description."""
with tf.compat.v1.name_scope(self._name, 'head'):
# Predict.
pred_keys = prediction_keys.PredictionKeys
predictions = self.predictions(logits)
if mode == ModeKeys.PREDICT:
probabilities = predictions[pred_keys.PROBABILITIES]
logistic = predictions[pred_keys.LOGISTIC]
classifier_output = base_head.classification_output(
scores=probabilities,
n_classes=2,
label_vocabulary=self._label_vocabulary)
return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access
mode=ModeKeys.PREDICT,
predictions=predictions,
export_outputs={
base_head.DEFAULT_SERVING_KEY: classifier_output,
base_head.CLASSIFY_SERVING_KEY: classifier_output,
base_head.REGRESS_SERVING_KEY:
export_output.RegressionOutput(value=logistic),
base_head.PREDICT_SERVING_KEY:
export_output.PredictOutput(predictions)
})
regularized_training_loss = self.loss(
logits=logits,
labels=labels,
features=features,
mode=mode,
regularization_losses=regularization_losses)
scalar_loss = tf.reduce_mean(regularized_training_loss)
# Eval.
if mode == ModeKeys.EVAL:
eval_metrics = self.metrics(regularization_losses=regularization_losses)
return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access
mode=ModeKeys.EVAL,
predictions=predictions,
loss=scalar_loss,
eval_metrics=base_head.create_eval_metrics_tuple(
self.update_metrics, {
'eval_metrics': eval_metrics,
'features': features,
'logits': logits,
'labels': labels,
'regularization_losses': regularization_losses
}))
# Train.
train_op = base_head.create_estimator_spec_train_op(
head_name=self._name,
optimizer=optimizer,
train_op_fn=train_op_fn,
update_ops=update_ops,
trainable_variables=trainable_variables,
regularized_training_loss=regularized_training_loss,
loss_reduction=self._loss_reduction)
# Create summary.
base_head.create_estimator_spec_summary(
regularized_training_loss=scalar_loss,
regularization_losses=regularization_losses,
summary_key_fn=self._summary_key)
return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access
mode=ModeKeys.TRAIN,
predictions=predictions,
loss=scalar_loss,
train_op=train_op)

View file

@ -0,0 +1,136 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for DP-enabled binary class heads."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from tensorflow_privacy.privacy.estimators import binary_class_head
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
class DPBinaryClassHeadTest(tf.test.TestCase):
"""Tests for DP-enabled heads."""
def _make_input_data(self, size):
"""Create raw input data."""
feature_a = np.random.normal(4, 1, (size))
feature_b = np.random.normal(5, 0.7, (size))
feature_c = np.random.normal(6, 2, (size))
noise = np.random.normal(0, 30, (size))
features = {
'feature_a': feature_a,
'feature_b': feature_b,
'feature_c': feature_c,
}
labels = np.array(
np.power(feature_a, 3) + np.power(feature_b, 2) +
np.power(feature_c, 1) + noise > 125).astype(int)
return features, labels
def _make_input_fn(self, features, labels, training, batch_size=16):
def input_fn():
"""An input function for training or evaluating."""
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
# Shuffle if in training mode.
if training:
dataset = dataset.shuffle(1000)
return dataset.batch(batch_size)
return input_fn
def _make_model_fn(self, head, optimizer, feature_columns):
"""Constructs and returns a model_fn using DPBinaryClassHead."""
def model_fn(features, labels, mode, params, config=None): # pylint: disable=unused-argument
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
inputs = feature_layer(features)
hidden_layer = tf.keras.layers.Dense(units=3, activation='relu')
hidden_layer_values = hidden_layer(inputs)
logits_layer = tf.keras.layers.Dense(
units=head.logits_dimension, activation=None)
logits = logits_layer(hidden_layer_values)
return head.create_estimator_spec(
features=features,
labels=labels,
mode=mode,
logits=logits,
trainable_variables=hidden_layer.trainable_weights +
logits_layer.trainable_weights,
optimizer=optimizer)
return model_fn
def testLoss(self):
"""Tests loss() returns per-example losses."""
head = binary_class_head.DPBinaryClassHead()
features = {'feature_a': np.full((4), 1.0)}
labels = np.array([[1.0], [1.0], [1.0], [0.0]])
logits = np.full((4, 1), 0.5)
actual_loss = head.loss(labels, logits, features)
expected_loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=labels, logits=logits)
self.assertEqual(actual_loss.shape, [4, 1])
if tf.executing_eagerly():
self.assertEqual(actual_loss.shape, [4, 1])
self.assertAllClose(actual_loss, expected_loss)
return
self.assertAllClose(expected_loss, self.evaluate(actual_loss))
def testCreateTPUEstimatorSpec(self):
"""Tests that an Estimator built with this head works."""
train_features, train_labels = self._make_input_data(256)
feature_columns = []
for key in train_features:
feature_columns.append(tf.feature_column.numeric_column(key=key))
head = binary_class_head.DPBinaryClassHead()
optimizer = DPKerasSGDOptimizer(
learning_rate=0.5,
l2_norm_clip=1.0,
noise_multiplier=0.0,
num_microbatches=2)
model_fn = self._make_model_fn(head, optimizer, feature_columns)
classifier = tf.estimator.Estimator(model_fn=model_fn)
classifier.train(
input_fn=self._make_input_fn(train_features, train_labels, True),
steps=4)
test_features, test_labels = self._make_input_data(64)
classifier.evaluate(
input_fn=self._make_input_fn(test_features, test_labels, False),
steps=4)
predict_features, predict_labels_ = self._make_input_data(64)
classifier.predict(
input_fn=self._make_input_fn(predict_features, predict_labels_, False))
if __name__ == '__main__':
tf.test.main()

View file

@ -0,0 +1,60 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Estimator heads that allow integration with TF Privacy."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow_privacy.privacy.estimators.binary_class_head import DPBinaryClassHead
from tensorflow_privacy.privacy.estimators.multi_class_head import DPMultiClassHead
def binary_or_multi_class_head(n_classes, weight_column, label_vocabulary,
loss_reduction):
"""Creates either binary or multi-class head.
Args:
n_classes: Number of label classes.
weight_column: A string or a `NumericColumn` created by
`tf.feature_column.numeric_column` defining feature column representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example. If it is a string, it is
used as a key to fetch weight tensor from the `features`. If it is a
`NumericColumn`, raw tensor is fetched by key `weight_column.key`, then
weight_column.normalizer_fn is applied on it to get weight tensor.
label_vocabulary: A list of strings represents possible label values. If
given, labels must be string type and have any value in
`label_vocabulary`. If it is not given, that means labels are already
encoded as integer or float within [0, 1] for `n_classes=2` and encoded as
integer values in {0, 1,..., n_classes-1} for `n_classes`>2 . Also there
will be errors if vocabulary is not provided and labels are string.
loss_reduction: One of `tf.losses.Reduction` except `NONE`. Defines how to
reduce training loss over batch. Defaults to `SUM_OVER_BATCH_SIZE`.
Returns:
A `Head` instance.
"""
if n_classes == 2:
head = DPBinaryClassHead(
weight_column=weight_column,
label_vocabulary=label_vocabulary,
loss_reduction=loss_reduction)
else:
head = DPMultiClassHead(
n_classes,
weight_column=weight_column,
label_vocabulary=label_vocabulary,
loss_reduction=loss_reduction)
return head

View file

@ -0,0 +1,146 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multiclass head for Estimator that allow integration with TF Privacy."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.keras.utils import losses_utils # pylint: disable=g-direct-tensorflow-import
from tensorflow_estimator.python.estimator import model_fn
from tensorflow_estimator.python.estimator.canned import prediction_keys
from tensorflow_estimator.python.estimator.export import export_output
from tensorflow_estimator.python.estimator.head import base_head
from tensorflow_estimator.python.estimator.mode_keys import ModeKeys
class DPMultiClassHead(tf.estimator.MultiClassHead):
"""Creates a TF Privacy-enabled version of MultiClassHead."""
def __init__(self,
n_classes,
weight_column=None,
label_vocabulary=None,
loss_reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
loss_fn=None,
name=None):
super(DPMultiClassHead, self).__init__(
n_classes=n_classes,
weight_column=weight_column,
label_vocabulary=label_vocabulary,
loss_reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
loss_fn=loss_fn,
name=name)
def loss(self,
labels,
logits,
features=None,
mode=None,
regularization_losses=None):
"""Returns regularized training loss. See `base_head.Head` for details."""
del mode # Unused for this head.
with tf.compat.v1.name_scope(
'losses', values=(logits, labels, regularization_losses, features)):
logits = base_head.check_logits_final_dim(logits, self.logits_dimension)
labels = self._processed_labels(logits, labels)
unweighted_loss, weights = self._unweighted_loss_and_weights(
logits, labels, features)
vector_training_loss = losses_utils.compute_weighted_loss(
unweighted_loss,
sample_weight=weights,
reduction=tf.keras.losses.Reduction.NONE)
regularization_loss = tf.math.add_n(
regularization_losses) if regularization_losses is not None else None
vector_regularized_training_loss = (
tf.add(vector_training_loss, regularization_loss)
if regularization_loss is not None else vector_training_loss)
return vector_regularized_training_loss
def _create_tpu_estimator_spec(self,
features,
mode,
logits,
labels=None,
optimizer=None,
trainable_variables=None,
train_op_fn=None,
update_ops=None,
regularization_losses=None):
"""See superclass for description."""
with tf.compat.v1.name_scope(self._name, 'head'):
# Predict.
pred_keys = prediction_keys.PredictionKeys
predictions = self.predictions(logits)
if mode == ModeKeys.PREDICT:
probabilities = predictions[pred_keys.PROBABILITIES]
classifier_output = base_head.classification_output(
scores=probabilities,
n_classes=self._n_classes,
label_vocabulary=self._label_vocabulary)
return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access
mode=ModeKeys.PREDICT,
predictions=predictions,
export_outputs={
base_head.DEFAULT_SERVING_KEY:
classifier_output,
base_head.CLASSIFY_SERVING_KEY:
classifier_output,
base_head.PREDICT_SERVING_KEY:
export_output.PredictOutput(predictions)
})
regularized_training_loss = self.loss(
logits=logits,
labels=labels,
features=features,
mode=mode,
regularization_losses=regularization_losses)
scalar_loss = tf.reduce_mean(regularized_training_loss)
# Eval.
if mode == ModeKeys.EVAL:
eval_metrics = self.metrics(regularization_losses=regularization_losses)
return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access
mode=ModeKeys.EVAL,
predictions=predictions,
loss=scalar_loss,
eval_metrics=base_head.create_eval_metrics_tuple(
self.update_metrics, {
'eval_metrics': eval_metrics,
'features': features,
'logits': logits,
'labels': labels,
'regularization_losses': regularization_losses
}))
# Train.
train_op = base_head.create_estimator_spec_train_op(
head_name=self._name,
optimizer=optimizer,
train_op_fn=train_op_fn,
update_ops=update_ops,
trainable_variables=trainable_variables,
regularized_training_loss=regularized_training_loss,
loss_reduction=self._loss_reduction)
# Create summary.
base_head.create_estimator_spec_summary(
regularized_training_loss=scalar_loss,
regularization_losses=regularization_losses,
summary_key_fn=self._summary_key)
return model_fn._TPUEstimatorSpec( # pylint: disable=protected-access
mode=ModeKeys.TRAIN,
predictions=predictions,
loss=scalar_loss,
train_op=train_op)

View file

@ -0,0 +1,152 @@
# Copyright 2020, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for DP-enabled binary class heads."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from tensorflow_privacy.privacy.estimators import multi_class_head
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
class DPMultiClassHeadTest(tf.test.TestCase):
"""Tests for DP-enabled heads."""
def _make_input_data(self, size):
"""Create raw input data."""
feature_a = np.random.normal(4, 1, (size))
feature_b = np.random.normal(5, 0.7, (size))
feature_c = np.random.normal(6, 2, (size))
noise = np.random.normal(0, 30, (size))
features = {
'feature_a': feature_a,
'feature_b': feature_b,
'feature_c': feature_c,
}
def label_fn(x):
if x < 110.0:
return 0
elif x < 140.0:
return 1
else:
return 2
labels_list = map(
label_fn,
np.power(feature_a, 3) + np.power(feature_b, 2) +
np.power(feature_c, 1) + noise)
return features, list(labels_list)
def _make_input_fn(self, features, labels, training, batch_size=16):
def input_fn():
"""An input function for training or evaluating."""
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
# Shuffle if in training mode.
if training:
dataset = dataset.shuffle(1000)
return dataset.batch(batch_size)
return input_fn
def _make_model_fn(self, head, optimizer, feature_columns):
"""Constructs and returns a model_fn using DPBinaryClassHead."""
def model_fn(features, labels, mode, params, config=None): # pylint: disable=unused-argument
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
inputs = feature_layer(features)
hidden_layer = tf.keras.layers.Dense(units=3, activation='relu')
hidden_layer_values = hidden_layer(inputs)
logits_layer = tf.keras.layers.Dense(
units=head.logits_dimension, activation=None)
logits = logits_layer(hidden_layer_values)
return head.create_estimator_spec(
features=features,
labels=labels,
mode=mode,
logits=logits,
trainable_variables=hidden_layer.trainable_weights +
logits_layer.trainable_weights,
optimizer=optimizer)
return model_fn
def testLoss(self):
"""Tests loss() returns per-example losses."""
head = multi_class_head.DPMultiClassHead(3)
features = {'feature_a': np.full((4), 1.0)}
labels = np.array([[2], [1], [1], [0]])
logits = np.array([[2.0, 1.5, 4.1], [2.0, 1.5, 4.1], [2.0, 1.5, 4.1],
[2.0, 1.5, 4.1]])
actual_loss = head.loss(labels, logits, features)
expected_loss = tf.expand_dims(
tf.compat.v1.losses.sparse_softmax_cross_entropy(
labels=labels,
logits=logits,
reduction=tf.keras.losses.Reduction.NONE), -1)
self.assertEqual(actual_loss.shape, [4, 1])
if tf.executing_eagerly():
self.assertEqual(actual_loss.shape, [4, 1])
self.assertAllClose(actual_loss, expected_loss)
return
self.assertAllClose(expected_loss, self.evaluate(actual_loss))
def testCreateTPUEstimatorSpec(self):
"""Tests that an Estimator built with this head works."""
train_features, train_labels = self._make_input_data(256)
feature_columns = []
for key in train_features:
feature_columns.append(tf.feature_column.numeric_column(key=key))
head = multi_class_head.DPMultiClassHead(3)
optimizer = DPKerasSGDOptimizer(
learning_rate=0.5,
l2_norm_clip=1.0,
noise_multiplier=0.0,
num_microbatches=2)
model_fn = self._make_model_fn(head, optimizer, feature_columns)
classifier = tf.estimator.Estimator(model_fn=model_fn)
classifier.train(
input_fn=self._make_input_fn(train_features, train_labels, True),
steps=4)
test_features, test_labels = self._make_input_data(64)
classifier.evaluate(
input_fn=self._make_input_fn(test_features, test_labels, False),
steps=4)
predict_features, predict_labels_ = self._make_input_data(64)
predictions = classifier.predict(
input_fn=self._make_input_fn(predict_features, predict_labels_, False))
for p in predictions:
print('schien p: ', p)
if __name__ == '__main__':
tf.test.main()

View file

@ -60,7 +60,7 @@ def make_keras_optimizer_class(cls):
self._num_microbatches = num_microbatches
self._dp_sum_query = gaussian_query.GaussianSumQuery(
l2_norm_clip, l2_norm_clip * noise_multiplier)
self._global_state = self._dp_sum_query.initial_global_state()
self._global_state = None
def _compute_gradients(self, loss, var_list, grad_loss=None, tape=None):
"""DP version of superclass method."""
@ -119,6 +119,9 @@ def make_keras_optimizer_class(cls):
def get_gradients(self, loss, params):
"""DP version of superclass method."""
if self._global_state is None:
self._global_state = self._dp_sum_query.initial_global_state()
# This code mostly follows the logic in the original DPOptimizerClass
# in dp_optimizer.py, except that this returns only the gradients,
# not the gradients and variables.