forked from 626_privacy/tensorflow_privacy
add helper for computing noise_multiplier from epsilon
This commit is contained in:
parent
35a8096173
commit
3bf78f46fe
3 changed files with 187 additions and 0 deletions
|
@ -0,0 +1,67 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
r"""Command-line script for computing privacy of a model trained with DP-SGD.
|
||||
|
||||
The script applies the RDP accountant to estimate privacy budget of an iterated
|
||||
Sampled Gaussian Mechanism. The mechanism's parameters are controlled by flags.
|
||||
|
||||
Example:
|
||||
compute_dp_sgd_privacy
|
||||
--N=60000 \
|
||||
--batch_size=256 \
|
||||
--epsilon=2.92 \
|
||||
--epochs=60 \
|
||||
--delta=1e-5
|
||||
|
||||
The output states that DP-SGD with these parameters should
|
||||
use a noise multiplier of 1.12.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.compute_noise_from_budget_lib import compute_noise
|
||||
|
||||
# Opting out of loading all sibling packages and their dependencies.
|
||||
sys.skip_tf_privacy_import = True
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
flags.DEFINE_integer('N', None, 'Total number of examples')
|
||||
flags.DEFINE_integer('batch_size', None, 'Batch size')
|
||||
flags.DEFINE_float('epsilon', None, 'Target epsilon for DP-SGD')
|
||||
flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)')
|
||||
flags.DEFINE_float('delta', 1e-6, 'Target delta')
|
||||
|
||||
|
||||
def main(argv):
|
||||
del argv # argv is not used.
|
||||
|
||||
assert FLAGS.N is not None, 'Flag N is missing.'
|
||||
assert FLAGS.batch_size is not None, 'Flag batch_size is missing.'
|
||||
assert FLAGS.epsilon is not None, 'Flag epsilon is missing.'
|
||||
assert FLAGS.epochs is not None, 'Flag epochs is missing.'
|
||||
compute_noise(FLAGS.N, FLAGS.batch_size, FLAGS.epsilon,
|
||||
FLAGS.epochs, FLAGS.delta)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
|
@ -0,0 +1,80 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Library for computing privacy values for DP-SGD."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
import sys
|
||||
|
||||
from absl import app
|
||||
from scipy.optimize import bisect
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp # pylint: disable=g-import-not-at-top
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
|
||||
# Opting out of loading all sibling packages and their dependencies.
|
||||
sys.skip_tf_privacy_import = True
|
||||
|
||||
|
||||
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
|
||||
"""Compute and print results of DP-SGD analysis."""
|
||||
|
||||
# compute_rdp requires that sigma be the ratio of the standard deviation of
|
||||
# the Gaussian noise to the l2-sensitivity of the function to which it is
|
||||
# added. Hence, sigma here corresponds to the `noise_multiplier` parameter
|
||||
# in the DP-SGD implementation found in privacy.optimizers.dp_optimizer
|
||||
rdp = compute_rdp(q, sigma, steps, orders)
|
||||
|
||||
eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta)
|
||||
|
||||
return eps, opt_order
|
||||
|
||||
|
||||
def compute_noise(n, batch_size, target_epsilon, epochs, delta):
|
||||
"""Compute noise based on the given hyperparameters."""
|
||||
q = batch_size / n # q - the sampling ratio.
|
||||
if q > 1:
|
||||
raise app.UsageError('n must be larger than the batch size.')
|
||||
orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] +
|
||||
list(range(5, 64)) + [128, 256, 512])
|
||||
steps = int(math.ceil(epochs * n / batch_size))
|
||||
|
||||
init_noise = 1e-5 # minimum possible noise
|
||||
init_epsilon, _ = apply_dp_sgd_analysis(q, init_noise, steps, orders, delta)
|
||||
|
||||
if init_epsilon < target_epsilon: # 1e-5 was an overestimate
|
||||
return 0
|
||||
|
||||
cur_epsilon = init_epsilon
|
||||
max_noise, min_noise = init_noise, 0
|
||||
|
||||
# doubling to find the right range
|
||||
while cur_epsilon > target_epsilon: # until noise is large enough
|
||||
max_noise, min_noise = max_noise*2, max_noise
|
||||
cur_epsilon, _ = apply_dp_sgd_analysis(q, max_noise, steps, orders, delta)
|
||||
|
||||
def epsilon_fn(noise): # should return 0 if guess_epsilon==target_epsilon
|
||||
guess_epsilon = apply_dp_sgd_analysis(q, noise, steps, orders, delta)[0]
|
||||
return guess_epsilon - target_epsilon
|
||||
|
||||
target_noise = bisect(epsilon_fn, min_noise, max_noise)
|
||||
print('DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated'
|
||||
' over {} steps satisfies'.format(100 * q, target_noise, steps), end=' ')
|
||||
print('differential privacy with eps = {:.3g} and delta = {}.'.format(
|
||||
target_epsilon, delta))
|
||||
return target_noise
|
|
@ -0,0 +1,40 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import compute_noise_from_budget_lib
|
||||
|
||||
|
||||
class ComputeNoiseFromBudgetTest(parameterized.TestCase):
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('Test0', 60000, 150, 0.941870567, 15, 1e-5, 1.3),
|
||||
('Test1', 100000, 100, 1.70928734, 30, 1e-7, 1.0),
|
||||
('Test2', 100000000, 1024, 5907984.81339406, 10, 1e-7, 0.1),
|
||||
)
|
||||
def test_compute_noise(self, n, batch_size, target_epsilon, epochs,
|
||||
delta, expected_noise):
|
||||
target_noise = compute_noise_from_budget_lib.compute_noise(
|
||||
n, batch_size, target_epsilon, epochs, delta)
|
||||
self.assertAlmostEqual(target_noise, expected_noise)
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
Loading…
Reference in a new issue