Clarify logic in Keras version of DP-SGD optimizer, and add a unit test involving clipping on multiple variables.

PiperOrigin-RevId: 472559697
This commit is contained in:
Steve Chien 2022-09-06 14:36:12 -07:00 committed by A. Unique TensorFlower
parent 628e5bb926
commit 407e5c8e11
2 changed files with 49 additions and 1 deletions

View file

@ -271,10 +271,12 @@ def make_keras_optimizer_class(cls):
jacobian = tape.jacobian(
microbatch_losses, var_list, unconnected_gradients='zero')
# Clip gradients to given l2_norm_clip.
def clip_gradients(g):
"""Clips gradients to given l2_norm_clip."""
return tf.clip_by_global_norm(g, self._l2_norm_clip)[0]
# Clip all gradients. Note that `tf.map_fn` applies the given function
# to its arguments unstacked along axis 0.
clipped_gradients = tf.map_fn(clip_gradients, jacobian)
def reduce_noise_normalize_batch(g):

View file

@ -133,6 +133,52 @@ class DPOptimizerComputeGradientsTest(tf.test.TestCase, parameterized.TestCase):
grads_and_vars = opt._compute_gradients(loss, [var0])
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
@parameterized.named_parameters(
('DPGradientDescent 1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.5, 1),
('DPGradientDescent 2', dp_optimizer_keras.DPKerasSGDOptimizer, 2.5, 2),
('DPGradientDescent 4', dp_optimizer_keras.DPKerasSGDOptimizer, 2.5, 4),
('DPGradientDescentVectorized',
dp_optimizer_keras_vectorized.VectorizedDPKerasSGDOptimizer, 2.5, 1),
)
def testClippingNormMultipleVariables(self, cls, l2_clip_norm,
num_microbatches):
var0 = tf.Variable([1.0, 2.0])
var1 = tf.Variable([3.0])
data0 = tf.Variable([[3.0, 6.0], [5.0, 6.0], [4.0, 8.0], [-1.0, 0.0]])
data1 = tf.Variable([[8.0], [2.0], [3.0], [1.0]])
opt = cls(
l2_norm_clip=l2_clip_norm,
noise_multiplier=0.0,
num_microbatches=num_microbatches,
learning_rate=2.0)
loss = lambda: self._loss(data0, var0) + self._loss(data1, var1)
# Expected gradient is sum of differences.
grads_and_vars = opt._compute_gradients(loss, [var0, var1])
# Compute expected gradients.
batch_size = data0.shape[0]
grad0 = (data0 - var0).numpy()
grad1 = (data1 - var1).numpy()
grads = np.concatenate([grad0, grad1], axis=1)
grads = np.reshape(
grads, (num_microbatches, int(batch_size / num_microbatches), -1))
grads = np.mean(grads, axis=1)
norms = np.apply_along_axis(np.linalg.norm, axis=1, arr=grads)
grad_factors = l2_clip_norm / np.maximum(l2_clip_norm, norms)
scaled_grads = grads * grad_factors[:, None]
mean_scaled_grads = -np.mean(scaled_grads, axis=0)
expected0, expected1 = np.split(mean_scaled_grads, [2], axis=0)
# Compare expected with actual gradients.
self.assertAllCloseAccordingToType(expected0, grads_and_vars[0][0])
self.assertAllCloseAccordingToType(expected1, grads_and_vars[1][0])
@parameterized.named_parameters(
('DPGradientDescent 2 4 1', dp_optimizer_keras.DPKerasSGDOptimizer, 2.0,
4.0, 1),